Національний університет «Львівська політехніка» Міністерство освіти і науки України

Кваліфікаційна наукова праця на правах рукопису

Доскіч Софія Василівна

УДК: 528.31+551.242.1

ДИСЕРТАЦІЯ

КОМБІНОВАНИЙ РОЗВ'ЯЗОК КООРДИНАТ АКТИВНИХ РЕФЕРЕНЦНИХ GNSS СТАНЦІЙ УКРАЇНИ

<u>05.24.01-Геодезія, фотограмметрія та картографія</u> (шифр і назва спеціальності)

> <u>05- Технічні науки</u> (галузь знань)

Подається на здобуття наукового ступеня кандидата технічних наук

Дисертація містить результати власних досліджень. Використання ідей,

результатів і текстів інших авторів мають посилання на відповідне джерело

С.В. Доскіч

D/

Науковий керівник: Савчук Степан Григорович, д.т.н., професор

Ідентичність всіх примірників дисертації **ЗАСВІДЧУЮ:** *Вчений секретар спеціалізованої*

вченої ради 🦪 /Б.Б.Паляниця

Львів — 2018

АНОТАЦІЯ

Доскіч С.В. Комбінований розв'язок координат активних референцних GNSS станцій України.

Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.24.01 «Геодезія, фотограмметрія та картографія». – Національний університет «Львівська політехніка», Міністерство освіти і науки України, Львів, 2019.

Дисертація присвячена теоретичним та практичним дослідженням, які пов'язані з підвищенням надійності координатного забезпечення шляхом комбінованого розв'язку для координат активних референцних GNSS-станцій України.

У першому розділі розглянуто комбіновані розв'язки, системи відліку та відлікові основи, які на сьогоднішній день застосовуються в космічній геодезії. Також було досліджено організацію та роботу національних мереж референцних GNSS-станцій на прикладі 12 країн: Австрії, Бельгії, Німеччини, Іспанії, Франції, Угорщини, Італії, Нідерландів, Польщі, Португалії, Словаччини та Норвегії. На основі аналізу розглянутих національних систем відліку, розроблено алгоритм згущення Загальноєвропейської референцної системи ETRF2000 до національних масштабів (території України). Результатом цього кроку має бути реалізація системи ETRF2000 для мережі активних референцних GNSS-станцій України.

У другому розділі розглянуто програмні продукти для створення комбінованих розв'язків для GNSS-спостережень. Особливу увагу приділялося пакету GAMIT/GLOBK версії 10.6, як основного інструменту для опрацювання GNSS-мережі України. Представлено вхідні дані для створення об'єднаного в часі розв'язку: результати спостережень з мережі активних референцних GNSS-станцій України за 2013-2016 роки (1721-1929 GPS-тижні). Виконано обробку спостережень мережі активних референцних GNSS-станцій України за період чотири роки. Під час опрацювання використовувалися рекомендації щодо згущення ITRF для національних мереж та всі доступні продукти IGS. Систему відліку було реалізовано за допомогою всіх доступних опорних станцій EPN/IGS з

Польщі (BYDG, JOZ2, LAMA, USDL), Австрії (GRAZ), Молдови (IGEO), Італії (MATE), Росії (MDVJ, ZECK), Німеччини (POTS, WTZR), Латвії (RIGA), Болгарії (SOFI), Литви (VLNS) та України (CNIV, GLSV, MIKL, POLV, SULP, UZHL).

Досліджено оптимальне значення характеристики точності χ^2 (chi-квадрат) (max_chii2 = 100 5 20000), яке використовувалося в програмному забезпеченні GAMIT-GLOBK для визначення координат і швидкостей координат станцій. Виконано апробацію отриманого комбінованого розв'язку з програмного пакету GAMIT/GLOBK шляхом його порівняння з розв'язком EPN, який створено програмою Bernese. Середньоквадратичні похибки між розв'язками складають 4-7 мм для координат та 0.4 мм для швидкостей координат. Враховуючи малі значення похибок між обчисленим GAMIT/GLOBK розв'язком та EPN розв'язком, програмний пакет GAMIT/GLOBK може бути використаний для створення комбінованих розв'язків, які в подальшому можуть використовуватися для регіональних та місцевих геодинамічних досліджень, геофізичної інтерпретації та багатьох практичних застосувань у геодезії.

В третьому розділі було реалізовано розроблену методику створення української національної системи відліку. Визначено параметри ротації частини Євразійської плити в межах території України, що дало змогу підвищити точність визначення вектора зміщень перманентних станцій порівняно з уже наявними моделями. Була виконана трансформація з системи ITRF до ETRF за допомогою обчислених параметрів ротації частини Євразійської плити в межах території України на основі швидкостей координат вибраних GNSS-станцій. Нанесено на векторизовану тектонічну карту масштабу 1:500000 обчислені з об'єднаного в часі розв'язку векторами горизонтальних швидкостей координат та виконано інтерпретацію отриманих результатів. Вектори горизонтальних складових швидкостей координат станцій спрямовані до Воронезького кристалічного масиву. Показники швидкостей зміни координат зафіксовані в межах 22-25 мм/рік. В майбутньому, з продовженням часового інтервалу таких спостережень планується створити регіональну геодинамічну модель України. Ключові слова: комбінований розв'язок, референцна GNSS-станція, згущення мережі, горизонтальний рух земної кори, тектонічна структура, ротаційні параметри.

Список публікацій здобувача

1. С. Доскіч. Застосування програмного пакета GAMIT-GLOBK для створення регіональних комбінованих GNSS розв'язків. Сучасні досягнення геодезичної науки та виробництва. - 2016. - Вип. 1. - С. 59-62.

2. С. Доскіч. Математичні принципи створення комбінованих GNSS розв'язків. Сучасні досягнення геодезичної науки та виробництва. - 2016. - Вип. 2. - С. 79-82.

3. С. Доскіч. Оцінка точності регіонального комбінованого GNSS розв'язку. Геодезія, картографія і аерофотознімання – 2016 - Вип. 83 – С.34-42.

4. S. Savchuk, S. Doskich. Densification ITRF08 into Ukraine area. Scientific journal "BALTIC SURVEYING" – 2017/1 (ISSN 2255 – 999X) – Vol.6 – p.33-38

5. S. Savchuk, S. Doskich. Monitoring of crustal movements in Ukraine using the network of reference GNSS-stations. Scientific journal "Geodynamics", Volume 2(23) 2017, p. 7-13.

С. Доскіч. Про реалізацію земної референцної системи в національному масштабі. Міжнародна наукова конференція Астрономічна школа молодих вчених Україна, Житомир, 20-22 травня 2015 р. Програма і тези доповідей – 2015 – С.22-23.

7. С. Доскіч. Оцінка точності комбінованого розв'язку регіональної мережі GNSS станцій. Програма та тези конференції Геофорум-2016 – 2016 - С. 28-29.

8. S. Doskich. Geodynamics and Troposphere research using the software GAMIT-GLOBK. Abstracts 23rd Young Scientists' Conference on Astronomy and Space Physics – 2016 - P. 34-35.

9. С. Савчук, С. Доскіч. Дослідження оптимального часового інтервалу комбінування даних GNSS спостережень для геодинаміки. Матеріали VI Міжнародної наукової конференції «Геофізичні технології прогнозування та моніторингу геологічного середовища» - 2016 - С. 247-249.

10. С.В. Доскіч, А.О. Марко. Порівняння координатних розв'язків з програмних пакетів GAMIT-GLOBK і GIPSY-OASIS. Матеріали VIII Міжнародної науковопрактичної конференції «Нові технології в геодезії, землекористуванні, лісовпорядкуванні та природокористуванні» - 2016 - С. 121-124.

11. С. Доскіч. Дослідження геодинамічних впливів на зміну координат активних GNSS станцій України. Інформаційний бюлетень науково-освітнього консорціуму ГеоГеліоАстрофізика - 2017– С. 23-24.

ABSTRACT

Doskich S.V. Combined solution of coordinates of active reference GNSS stations of Ukraine.

Thesis for the degree of candidate of technical sciences by specialty 05.24.01 – Geodesy, photogrammetry, and cartography. – Lviv Polytechnic National University, Lviv, 2017.

This thesis is devoted to theoretical and practical researches which are connected with the increase by the accuracy of coordinates by estimation of combined solution for active reference GNSS stations of Ukraine.

We investigated the combined solutions, reference systems, and reference frames that are currently used in space geodesy. Also, the organization and operation of national networks of reference GNSS stations in Europe (Austria, Belgium, Germany, Spain, France, Hungary, Italy, Netherlands, Poland, Portugal, Slovakia and Norway) were investigated. Based on the analysis of the considered national reference systems, we developed the algorithm for the densification of the European Terrestrial Reference Frame ETRF2000 to the national scale (the territory of Ukraine). The result of this step should be the realization of the ETRF2000 for the network of active reference GNSS stations in Ukraine.

Software products are considered for the estimation of combined solutions for GNSS observations. Particular attention was paid to GAMIT/GLOBK version 10.6 as the main tool for processing GNSS network of Ukraine. The observations from the network of active reference GNSS stations of Ukraine for the period of 2013-2016 years

was processed. During processing, we used the recommendations for densification of ITRF for national networks and all available IGS products. Reference frame were realized by the EPN/IGS stations from Poland (BYDG, JOZ2, LAMA, USDL), Austria (GRAZ), Moldova (IGEO), Italy (MATE), Russian (MDVJ, ZECK), Germany (POTS, WTZR), Latvia (RIGA), Bulgaria (SOFI), Lithuania (VLNS), and Ukraine(CNIV, GLSV, MIKL, POLV, SULP, UZHL).

The optimal value of the measure of goodness-offit χ^2 (chi-square) (max_chii2 = 100 5 20000), which was used in the software GAMIT-GLOBK to determine the coordinates and velocities of stations, was investigated. The estimated combined solution from the GAMIT/GLOBK software was tested by comparing it with the EPN solution created by the Bernese software. The RMS deviations between the solutions are 4-7 mm for coordinates and 0.4 mm for velocities. Considering the small values of the errors between the calculated GAMIT/GLOBK solution and the EPN solution, the GAMIT/GLOBK software can be used to estimate combined solutions that can subsequently be used for regional and local geodynamic studies, geophysical interpretation, and many practical applications in geodesy.

The parameters of the rotation of the Eurasian plate within the territory of Ukraine were determined, which made it possible to improve the accuracy of the determination of the displacement vector of permanent stations in comparison with the existing models. The transformation from the ITRF to the ETRF was performed using calculated rotation parameters of the Eurasian plate within the territory of Ukraine based on the velocities of the selected GNSS stations.

An electronic tectonic map of scale 1: 500 000 with the indicated vectors of the horizontal velocities of the reference GNSS stations were constructed and the received results were interpreted. The vectors of the horizontal velocities of the stations have a clear tendency towards the Voronezh Crystalline Massif. Horizontal velocities are within the range of 22-25 mm / year. In the future, with the extension of the time interval of such observations, it is planned to create a regional geodynamic model of Ukraine.

Keywords: combined solution, reference GNSS station, network densification, horizontal movement of the earth's crust, tectonic structure, rotation parameters.

The list of author's publications:

1. S. Doskich. Using the software application GAMIT-GLOBK for creating regional combined GNSS solutions. Recent advances in geodetic science and industry - 2016. - Vol. - p. 59-62.

2. S. Doskich. Mathematical principles of creating combined GNSS solutions. Recent advances in geodetic science and industry - 2016. - Vol. 2. - p. 79-82.

3. S. Doskich. Estimation of the accuracy regional combined GNSS solution. Geodesy, Cartography, and Aerial Photography – 2016 - Vol. 83 – p. 34-42.

4. S. Savchuk, S. Doskich. Densification ITRF08 into Ukraine area. Scientific journal "BALTIC SURVEYING" – 2017/1 (ISSN 2255 – 999X) – Vol.6 – p.33-38

5. S. Savchuk, S. Doskich. Monitoring of crustal movements in Ukraine using the network of reference GNSS-stations. Scientific journal "Geodynamics", Volume 2(23) 2017, p. 7-13.

 S. Doskich. On realization of the terrestrial reference frame on a national scale. Astronomical School of Young Scientists, Ukraine, Zhytomyr, May 20-22, 2015. Program and abstracts – 2015 – p. 22-23.

7. S. Doskich. Accuracy estimation of the combined solution of the regional network of GNSS stations. Program and abstracts conference «Geoforum – 2016»–2016 - p. 28-29.

8. S. Doskich. Geodynamics and Troposphere research using the software GAMIT-GLOBK. Abstracts 23rd Young Scientists' Conference on Astronomy and Space Physics – 2016 - p. 34-35.

9. S. Savchuk, S. Doskich. The investigations of GNSS observation data optimal time interval combination for the geodynamics tasks. Materials of the VI International Scientific Conference "Geophysical Technologies for the Prognosis and Monitoring of the Geological Environment"- 2016 - p. 247-249.

10. S. V. Doskich, A.O. Marko. Comparisons coordinate solutions from software GAMIT-GLOBK and GIPSY-OASIS. Materials of the VIII International scientific-practical conference "New technologies in geodesy, land and environmental management" - 2016 - p. 121-124.

11. S. Doskich. Investigation of geodynamic influences on the change of coordinates of active GNSS stations of Ukraine. Newsletter of the Scientific and educational consortium "GeoGelioAstrophysics" - 2017– p. 23-24.

3MICT

ВСТУП12
РОЗДІЛ 1
комбіновані розв'язки та особливості їх застосування
ПРИ ОПРАЦЮВАННІ СУПУТНИКОВИХ СПОСТЕРЕЖЕНЬ З
АКТИВНИХ РЕФЕРЕНЦНИХ GNSS-МЕРЕЖ
1.1 Комбіновані розв'язки в геодезії
1.2 Математичні принципи створення комбінованих розв'язків на рівні
параметрів
1.3 Системи відліку та їх реалізації
1.3.1. Геодезичні мережі відлікових основ
1.3.2. Мережі згущення EPN як основа національних систем відліку
ВИСНОВКИ ДО РОЗДІЛУ 1
РОЗДІЛ 2
ІНСТРУМЕНТАРІЙ ОПРАЦЮВАННЯ ДАНИХ СУПУТНИКОВИХ
СПОСТЕРЕЖЕНЬ ДЛЯ МЕРЕЖ РЕФЕРЕНЦНИХ GNSS-СТАНЦІЙ47
2.1 Опис програмного забезпечення
2.1.1. Програмне забезпечення Bernese
2.1.2. Програмне забезпечення GAMIT/GLOBK
2.2 Вхідні дані з мереж референцних GNSS-станцій
2.3 Стратегія обробки спостережень для створення комбінованого розв'язку в
програмі Gamit-Globk
2.4 Порівняння отриманих результатів
ВИСНОВКИ ДО РОЗДІЛУ 2
РОЗДІЛ 3
АПРОБАЦІЯ РОЗРОБЛЕНОЇ МЕТОДИКИ СТВОРЕННЯ НАЦІОНАЛЬНОЇ
РЕФЕРЕНЦНОЇ СИСТЕМИ КООРДИНАТ ТА ГЕОДИНАМІЧНА
ІНТЕРПРЕТАЦІЯ ОБ'ЄДНАНОГО В ЧАСІ РОЗВ'ЯЗКУ
3.1. Обчислення параметрів ротації частини Євразійської плити в межах території
V-maï contraction

3.2	Огляд рухів земної кори для основних тектонічних структур	
3.3	Отримані результати та їх інтерпретація для основних тектонічни	ах структур
Укра	їни	
вис	НОВКИ ДО РОЗДІЛУ 3	
вис	НОВКИ	
СПИ	СОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ	
дод	АТКИ	
ДОД	АТОК А	
ДОД	АТОК Б	
ДОД	АТОК В	

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ

- DORIS Допплерівська орбітографія
- EPN Європейська мережа перманентних станцій
- ETRF Реалізація Європейської земної референцної системи
- ETRS Європейська земна референцна система відліку
- EUREF Підрозділ Міжнародної асоціації геодезії (IAG) для Європи
- GPS Глобальна система визначення місцеположення
- GNSS Узагальнена назва глобальних навігаційних супутникових систем
- GRS-80 геодезична система відліку 1980 року
- ІАG Міжнародна асоціація геодезії
- IAU Міжнародний астрономічний союз
- IERS Міжнародна служба обертання Землі
- IGS Міжнародна GPS служба
- ITRF Реалізація міжнародної Земної референцної системи
- ITRS Міжнародна Земна референцна система
- SLR Лазерна локація супутників
- VLBI Радіоінтерферометрія з наддовгою базою
- WGS84 Світова геодезична система відліку 1984 року
- СК42 Система геодезичних координат 1942 року
- СК63 Умовна система координат 1963 року
- ПЗ-90 Геоцентрична система координат 1990 року (РФ)
- УСК-2000 Державна геодезична референцна системи координат України

ВСТУП

З невпинним розвитком фундаментальних та прикладних досліджень в геодезії, геофізиці і геодинаміці, та з високим рівнем точності розв'язування фундаментальних і прикладних задач, вимоги до точності визначення земної системи відліку також постійно ростуть. Ha сьогоднішній день загальноприйнятою земною системою відліку є ITRS. Реалізації земної референцної системи ITRF у вигляді єдиного розв'язку базуються на різнорідних даних, що отримуються із безперервних спостережень за допомогою різних методів космічної геодезії, таких як GNSS, VLBI, SLR і DORIS на глобальні мережі станцій протягом тривалого періоду часу. Побудова такої системи найвищої якості у вигляді єдиного розв'язку відбувається за допомогою об'єднання даних з декількох окремих розв'язків, кожен з яких визначає свою власну основну реалізацію.

Однак для національних та регіональних досліджень недостатньо густоти станцій глобальної мережі. Тому для згущення мережі і покращення доступності міжнародної земної системи координат організовуються регіональні мережі та обчислюються регіональні комбіновані розв'язки. Це стало доступно з розвитком GNSS-технологій, через їх порівняно низьку вартість застосування та доступність до продуктів IGS. За допомогою національних та регіональних GNSS-мереж є можливість моніторити локальні геофізичні та геодинамічні процеси, в тому числі з високою точністю визначати горизонтальні рухи земної кори.

Необхідно зазначити, що проблемами згущення ITRF/ETRF в національних масштабах та дослідженнями горизонтальних рухів земної кори за GNSS вимірами займалися такі відомі вчені з Національного географічного інституту Франції (Altamimi Z., Sillard P., Boucher C.), Центру прикладної геоматики, Військового технологічного університету у Варшаві (Araszkiewicz A., Bogusz J., Szafranek K.), Швейцарського федерального відділення топографії (Brockmann E.); Королівської обсерваторії Бельгії (Bruyninx C., Legrand J.), Бюро шахт, геології та сейсмологічної лабораторії університету Невади (Blewitt G.), Кафедри наук про Землю університету Падуї (Caporali A.), Міланської політехніки (Caldera S.),

Гданського політехнічного університету (Figurski M.), Мюнхенського технічного університету (Seitz M.), Інституту прикладної астрономії РАН (Панафидина Н.А., Малкин З.М.), Робочої групи зі згущення ЕРN (Kenyeres A.) та вітчизняні дослідники з Національного університету «Львівська політехніка» (Савчук С.Г., Марченко О.М., Третяк К.Р., Серант О.В., Смірнова О.М., Вовк А.І.), Головної астрономічної обсерваторії НАН України (Литвин М.О., Хода О.А., Іщенко М.), Науково-дослідного інституту геодезії та картографії (Кучер О.В.) та інші.

Актуальність теми

При розв'язуванні задачі отримання реалізації загальноземної референцної системи ITRF глобального масштабу шляхом комбінованого розв'язку від окремих реалізацій, пов'язаних із різними технологіями космічної геодезії, є певні напрацювання у вигляді стандартизованих програмних пакетів: GAMIT-GLOBK (США), GIPSY-OASIS (США) та BERNISE (Швейцарія), але для подібної задачі в національних масштабах вони використовуються по аналогії, хоча при цьому між цими задачами є суттєві відмінності. Ці відмінності полягають у наступному:

- територіальних обмеженнях для реалізацій земної референцної системи ITRF;

- використанні ресурсів національних служб для розповсюдження реалізацій земної референцної системи ITRF;

- особливостях розвитку національних мереж станцій, інструментальної бази, центрів збору та опрацювання даних спостережень;

- запровадженні нормативно-правових обмежень реалізацій земної референцної системи ITRF тощо.

Отже, на сьогоднішній день проблема підходів до отримання комбінованого розв'язку для національних масштабів є актуальною проблемою.

Також дані регіонального комбінованого розв'язку (координати та швидкості координат) можуть широко використовуються в дослідженнях довготривалих рухів і деформацій земної кори, в сейсмології та частково при прогнозах

сейсмічної активності, при геодезичних роботах на великих інженерних спорудах, при будівництві дамб, мостів, ГЕС та ін.

Враховуючи науковий та економічний аспект цієї проблематики, можна говорити про те, що дані дослідження є необхідними та актуальними в наш час.

Зв'язок роботи з науковими програмами, планами, темами

Виконана робота відповідає науковому напряму кафедри вищої геодезії та астрономії «Моніторинг фізичної поверхні Землі та її атмосфери на основі аналізу результатів сучасних наземних і супутникових вимірювань»; науковій тематиці робіт галузевої науково-дослідної лабораторії «Геодезичного моніторингу та рефрактометрії» (ГНДЛ-18) та навчально-наукової лабораторії «Опрацювання супутникових вимірів» Інституту геодезії Національного університету «Львівська політехніка».

Дисертаційна робота виконана в межах науково-дослідних робіт, пов'язаних з вивченням геодинаміки Європейського континенту. Виконані дослідження відповідають науковому напряму «Науки про Землю і навколишнє середовище» Державного фонду фундаментальних досліджень.

Мета і завдання досліджень

Метою дисертаційної роботи є теоретичні та практичні дослідження, пов'язані з підвищенням надійності координатного забезпечення шляхом комбінованого розв'язку для координат активних референцних GNSS-станцій України.

Для досягнення поставленої мети необхідно було вирішити такі завдання:

- 1. Провести аналіз реалізацій національних систем відліку шляхом створення комбінованого розв'язку за даними багаторічних GNSS вимірів.
- 2. Розробити методику реалізації української національної системи відліку ITRF/ETRF.
- 3. Дослідити інструментарій створення комбінованих розв'язків для мережі активних референцних GNSS-станцій.

- Дослідити та визначити оптимальну конфігурацію опорних станцій для реалізації системи відліку в комбінованих розв'язках.
- Дослідити значення характеристики точності χ² (chi-квадрат) розв'язків в програмному пакеті Gamit-Globk та встановити оптимальні допуски для підвищення точності комбінованого розв'язку.
- 6. Реалізувати розроблену методику для створення української національної системи відліку ETRF2000 UKR.
- Провести геодинамічну інтерпретацію результатів обчисленого комбінованого розв'язку стосовно основних тектонічних структур на території України.

Об'єктом досліджень є мережа активних референцних GNSS-станції на території України.

Предметом досліджень є комбіновані розв'язки координат активних референцних станцій України на основі опрацювання щорічних серій результатів GNSS-спостережень.

Методи досліджень. В дослідженні використано методи, що ґрунтуються на опрацюванні геодезичних GNSS-вимірів та порівняльному аналізі отриманих результатів.

Наукова новизна одержаних результатів

• Розроблено методику реалізації української національної системи відліку на основі аналізу реалізацій національних систем відліку ряду європейських країн шляхом створення комбінованого розв'язку за даними багаторічних GNSSвимірів.

• Вперше отримані узгоджені ряди координат в системі відліку ITRF08 та визначено річні значення швидкостей координат за період 2013 – 2016 років для

понад 120 українських GNSS-станцій на території України і станцій близького зарубіжжя.

• Підвищено точність отримання об'єднаного в часі розв'язку в програмному пакеті Gamit-Globk шляхом встановлення експериментально визначених оптимальних допусків.

• Підвищено точність визначення вектора зміщень референцних GNSSстанцій порівняно з уже наявними моделями шляхом обчислення вектора ротаційних параметрів для території України.

• За розробленою методикою реалізовано національну систему відліку ETRF2000 UKR.

Практичне значення одержаних результатів

Практичне значення результатів полягає в наступному:

 отримані ряди координат станцій є високоточними даними для геодинамічних досліджень на території України та можуть бути використані в геодезії, картографії, землевпорядкуванні тощо;

 результати визначення швидкостей координат більш ніж 120 GNSS-станцій дозволяють провести аналіз руху окремих частин Євразійської тектонічної плити на території України, а також слугують для переходу з однієї системи відліку (ITRF) в іншу(ETRF);

• визначення ротаційних параметрів частини Євразійської плити в межах території України дозволило підвищити точність визначення координат та швидкостей координат референцних GNSS-станцій.

Основні положення, що виносяться на захист

• Методика реалізації національної системи відліку для території України.

• Створений об'єднаний в часі розв'язок за період 2013 – 2016 років для понад 120 GNSS-станцій на території України.

• Параметри ротації частини Євразійської плити в межах території України, які підвищують точність визначення вектора зміщень референцних GNSS-станцій порівняно з уже наявними моделями.

• Результати реалізації національної системи відліку ETRF2000_UKR.

Особистий внесок здобувача

Основні положення та результати дисертаційної роботи, отримані автором, опубліковано у співавторстві у працях [92, 93, 107, 130] та одноосібно у [28, 108, 109, 110, 111, 112, 113]. Автор самостійно обробив матеріали досліджень результати спостережень з мережі активних референцних GNSS-станцій України за 2013-2016 роки [111, 113, 112, 28, 108]. Серед наукових праць, які опубліковано у співавторстві, в роботі використано тільки ті положення та результати, які належать автору: виконано апробацію створеного регіонального комбінованого розв'язку [92, 107], визначено швидкості горизонтальних рухів земної поверхні[130] та нанесено на векторизовану тектонічну карту масштабу 1:500000 вектори горизонтальної складової швидкостей координат референцних GNSSстанцій [93].

Апробація результатів роботи

Основні теоретичні та експериментальні результати дисертаційної роботи доповідали та обговорювали на таких наукових зібраннях:

 20-ій Міжнародній науково-технічній конференції Геофорум-2015, Львів – Яворів – Брюховичі, 23-25 квітня 2015 р.

• Міжнародній науковій конференції «Астрономічна школа молодих вчених», Житомир, 20-22 травня 2015 р.

 • 21-ій Міжнародній науково-технічній конференції Геофорум-2016, Львів – Брюховичі – Яворів, 13-15 квітня 2016 р.

• 23rd Young Scientists' Conference on Astronomy and Space Physics, April 25-30, 2016 Kyiv, Ukraine.

• VI-ій Міжнародній науковій конференції «Геофізичні технології прогнозування та моніторингу геологічного середовища», м. Львів, 20-23 вересня 2016 р.

• VIII-ій Міжнародній науково-практичній конференції «Нові технології в геодезії, землекористуванні, лісовпорядкуванні та природокористуванні», Ужгород – Синевир, 6-8 жовтня 2016 р.

• Семінарі ГеоГеліоАстрофізика, м. Львів ЛНУ ім. І. Франка, 29 вересня 2016 р.

 • 22-ій Міжнародній науково-технічній конференції Геофорум-2017, Львів – Брюховичі – Яворів, 25-27 квітня 2017 р.

• International Scientific Methodical Conference BALTIC SURVEYING'17, Latvia, Jelgava, 10th – 12th of May, 2017

Публікації

За результатами дисертації опубліковано 11 наукових праць [28, 92, 93, 107, 108, 109, 110, 111, 112, 113, 130], 2 статті у наукових періодичних виданнях України, що входитять до міжнародних наукометричних баз [93, 111], 2 статті наукових фахових виданнях України [109, 110], 1 стаття в науковому періодичному виданні іншої держави [92] та 6 статей у збірниках тез наукових конференцій [28, 107, 108, 112, 113, 130].

Структура і обсяг дисертації

Дисертація складається зі вступу, трьох розділів, загальних висновків, списку використаних джерел (141 найменувань) та додатків. Загальний обсяг дисертації становить 130 сторінок, ілюстрації складають: 26 рисунків, 26 таблиць, додатки А-В.

РОЗДІЛ 1

КОМБІНОВАНІ РОЗВ'ЯЗКИ ТА ОСОБЛИВОСТІ ЇХ ЗАСТОСУВАННЯ ПРИ ОПРАЦЮВАННІ СУПУТНИКОВИХ СПОСТЕРЕЖЕНЬ З АКТИВНИХ РЕФЕРЕНЦНИХ GNSS-МЕРЕЖ

1.1 Комбіновані розв'язки в геодезії

Комбінованим розв'язком в геодезії називають спільну обробку сукупності результатів багаторазових вимірювань однієї і тієї ж величини. Математично цей процес зводиться до урівнювання (врівноваження).

Розглянемо, як виконувалось комбінування з використанням різних технологій вимірювання (від класичних до сучасних). Для цього найкраще розглядати геодезичні мережі. Адже будь-яка сучасна національна геодезична мережа створювалась протягом багатьох десятиліть. За ці роки змінювались геодезичні засоби і разом з ними і методи створення мереж: починаючи з тріангуляції і закінчуючи космічними методами, які активно розвиваються на сьогоднішній день.

Розглянемо процес врівноваження для чотирьох основних методів створення мереж:

- 1. Тріангуляція;
- 2. Трилатерація; класичні методи
- 3. Полігонометрія;
- 4. Методи космічної геодезії.

Тріангуляція – це мережа трикутників, що межують один з одним, у яких вимірюють усі кути й хоча би одну сторону. Винайшов і вперше застосував метод тріангуляції В. Снелліус ще в 1615-1617 рр., а до початку 20 ст. цей метод набув загального поширення. Координати початкових (вихідних) пунктів на кінцях ланки та азимути вихідних сторін визначають з астрономічних спостережень.

Трилатерація при розвитку державної геодезичної мережі застосовувалася досить обмежено, в основному для поширення координатної основи на віддалені острови і для забезпечення великомасштабних зйомок [106]. Трилатерація – це

також ланки трикутників, як і в тріангуляції, що межують один з одним, але з виміряними сторонами, а не кутами.

Полігонометрія, як метод розвитку мереж, відома так само давно, як і тріангуляція, але широке застосування отримала лише після розробки світло- та радіовіддалемірів. У полігонометричних ходах вимірюють сторони і, як правило, по два кути (лівий і правий) на більшості пунктів, тому в ходах, на відміну від мереж тріангуляції, мало надлишкових вимірювань. Нерідкісні випадки, коли грубі помилки лінійних вимірювань вдавалося виявити лише на стадії урівнювання.

Для урівнювання геодезичних мереж, створених класичними методами, застосовували два методи: корелатний і параметричний. Невеликі фігури тріангуляції, окремі фігури трилатерації, а також ряд трилатерації краще урівнювати корелатним методом. Для великих мереж тріангуляції, трилатерації та полігонометрії ефективніше і економніше використовувати параметричний метод.

В сучасному розумінні комбінованим розв'язком називають поєднання різних методів космічної геодезії, на підставі певних взаємозв'язків між ними. Такими зв'язками можуть бути:

• спільні оцінювані параметри (координати станцій, тропосферна зенітна затримка сигналу, деякі параметри обертання Землі тощо);

• майданчики (пункти колокації), на яких знаходяться кілька інструментів з відомими відстанями між їхніми реперними точками.

Поєднання різних методів спостережень може бути зроблено трьома способами або на трьох різних рівнях:

1. на рівні спостережень;

2. на рівні нормальних рівнянь;

3. на рівні параметрів.

Поєднання на рівні спостереження – це найпростіший підхід, який полягає у комбінації окремих розв'язків спостережень з різних методів, шляхом врахування поправок для їх приведення в єдину систему. Продуктами комбінування на рівні спостережень є ряди параметрів орієнтації Землі С04, а у 2009 році в рамках

Міжнародної служби обертання Землі (IERS) [62] навіть була створена робоча група для комбінування методів космічної геодезії на рівні спостережень.

Поєднання на рівні нормальних рівнянь полягає у поєднанні системи нормальних рівнянь, отриманих в процесі аналізу різних методів спостережень. У цьому підході використовують взаємозв'язки між методами, виконавши процедуру переходу до спільних апріорних значень у вихідних системах. Саме цей метод велике число науковців [119, 95, 55] найчастіше використовує для об'єднання різних методів космічної геодезії через врахування статистичної інформації про кожен з розв'язків та наявності великої кількості розв'язків з повною коваріаційною інформацією.

Поєднання на рівні параметрів показує чіткі відмінності з об'єднанням на рівні спостережень і нормальних рівнянь. Комбінація відбувається на етапі складання умовних рівнянь, з використанням однакових моделей параметрів та процедур оцінювання. Спершу застосовуються індивідуальні методи розв'язків для параметрів, а потім знайдені параметри об'єднуються і заново обчислюються з використанням методу найменших квадратів. Встановлюється мінімальна кількість спостережень для уникнення надмірних обмежень і отже деформацій розв'язку. Крім того потрібно враховувати, що комбінований розв'язок залежить від дисперсії та коваріації, отриманих з індивідуальних розв'язків, тому тільки надійні псевдоспостереження повинні застосовуватися отримання для розв'язків[119].

На сьогоднішній день основним продуктом комбінування є реалізації систем відліку ITRS, WGS84, ETRS та ПЗ-90.

При цьому реалізації систем відліку ITRF та ETRF обчислюють за даними спостережень чотирьох методів космічної геодезії: GNSS, VLBI, SLR, i DORIS, a peaniзації WGS84 та ПЗ-90 використовують тільки один метод GNSS. Оскільки для створення розв'язків у системах WGS84 та ПЗ-90 використовується тільки один метод, то називати такі розв'язки комбінованими, на нашу думку, недоречно. Саме тому нами було введено такий термін як «об'єднаний в часі розв'язок – це спільне опрацювання сукупності

GNSS-спостережень за певний період часу. Реалізація такого розв'язку виконується на рівні параметрів за методом найменших квадратів.

1.2 Математичні принципи створення комбінованих розв'язків на рівні параметрів

В поєднанні на рівні параметрів параметри обчислюють з використанням методу найменших квадратів (МНК). Відомо, що урівнювання цим методом (сума квадратів відхилень емпіричних значень від модельних є мінімальною) є окремим випадком теорії лінійних статистичних моделей. Найбільш відомою статистичною моделлю є модель Гаусса-Маркова. Згідно цієї моделі – нульового математичного очікування відхилень, сталості дисперсії відхилень, відсутності їх автокореляції та незалежності від незалежних змінних – оцінки параметрів будуть найкращими лінійними незміщеними оцінками серед всіх альтернативних оцінок цих параметрів.

Модель Гаусса-Маркова (МГМ) повного рангу за [71]:

$$E(y) = X\beta; \ D(y) = \sigma^2 P^{-1},$$
 (1.1)

Де X – матриця $n \times u$ коефіцієнтів з повним рангом rgX = u;

 $\beta - u \times 1$ вектор невідомих;

 $y - n \times 1$ вектор спостережень;

 $P - n \times n$ вагова матриця;

п,*и* – число спостережень і невідомих;

 $E(\cdot)$ – оператор сподівання (очікування);

 $D(\cdot)$ – оператор дисперсії;

 σ^2 – дисперсія одиниці ваги (коефіцієнт дисперсії).

Як правило, кількість спостережень більша, ніж число невідомих для того, щоб зменшити вплив одного спостереження на оцінку. Для n > u система рівнянь $X\beta = y$ не є постійною (послідовною). З додаванням вектора помилок *е* до вектора спостережень *y* отримаємо послідовну але неоднозначну систему рівнянь, яку також називають системою рівнянь спостережень. В космічні геодезії рівняння спостережень бувають, як правило, нелінійними і записуються:

$$y + e = f(\beta),$$

$$E(e) = \emptyset i \ D(e) = D(y) = \sigma^2 P^{-1};$$
(1.2)

Де $f(\cdot)$ позначає реальну диференційну функцію з невідомими параметрами β .

В ф-лі (1.2) якщо відомі апріорні значення (β₀) для невідомих параметрів β, то для перетворення нелінійної задачі в лінійну (лінеаризації) виконують розкладання рівняння спостережень в ряди Тейлора.

$$f(\beta) = f(\beta)|_{\beta = \beta|_{0}} + \partial_{\beta} f(\beta)|_{\beta = \beta|_{0}} \Delta\beta, \qquad (1.3)$$

 $\exists \text{Le } \Delta \beta = \beta - \beta \Big|_{_{0}}$.

Тоді урівнювання спостережень запишемо у вигляді:

$$\left(y - f(\beta)\Big|_{\beta = \beta|_{0}}\right) + e = \partial_{\beta} f(\beta)\Big|_{\beta = \beta|_{0}} \Delta\beta, \qquad (1.4)$$

або

$$\Delta y + e = X \Delta \beta . \tag{1.5}$$

Метод найменших квадратів вимагає накладання обмежень для рівнянь спостережень.

$$\Omega(\beta) = \frac{1}{\sigma^2} (y - X\beta)' P(y - X\beta).$$
(1.6)

Введення умови $\Omega(\beta) \to \min \epsilon$ необхідним для переходу від неоднозначних спостережень до однозначної системи нормальних рівнянь для визначення β . Обчислення мінімальних значень для $\Omega(\beta)$ вимагає розв'язання u рівнянь $d\Omega(\beta)/d\beta = \emptyset$, які також називають нормальними рівняннями.

Нормальні рівняння:

$$X'PX\hat{\beta} = X'Py. \tag{1.7}$$

Оцінки вектора параметрів:

$$\hat{\beta} = (XPX)^{-1}XPy.$$
(1.8)

Очікується, що спостереження є випадковими величинами, а коваріаційна матриця спостережень (1.8) відомою, за винятком коефіцієнта дисперсії σ^2 .

$$D(\hat{\beta}) = \hat{\sigma}^2 (X' P X)'. \tag{1.9}$$

Спостереження:

$$\hat{y} = X\hat{\beta} = Ry. \tag{1.10}$$

Квадратична форма:

$$\Omega = \hat{e}' P \hat{e} = y' P y - y' P X \hat{\beta} . \tag{1.11}$$

Дисперсія одиниці ваги (коефіцієнт дисперсії):

$$\hat{\sigma}^2 = \Omega / (n - u). \tag{1.12}$$

Необхідно, щоб апріорні значення параметрів були достатньо точними для апроксимації нелінійної функції з першим розкладанням в ряд Тейлора. Якщо це не так, тоді в додаткових ітераціях необхідно використати останні обчислені параметри як нове наближене значення.

Оцінку невідомих параметрів можна отримати з методу найменших квадратів, використовуючи одночасно всі спостереження. Такий же результат можна отримати, якщо розбити спостереження на декілька серій, по кожній серії незалежно отримати оцінку МНК загального набору параметрів, після чого отримати загальний комбінований розв'язок [16]. Ця процедура також відома як "Helmert blocking" [58]. На сьогоднішній день її широко застосовують для опрацювання значної кількості GNSS-спостережень.

За цими незалежним серіям спостережень можна отримати дві оцінки $\hat{\beta}_1$ і $\hat{\beta}_2$ вектору невідомих параметрів β . За цими оцінками можна обчислити комбінований розв'язок $\hat{\beta}_c$. Для цього індивідуальні оцінки використовують для формування системи урівнювання псевдоспостережень:

$$\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} I \\ I \end{bmatrix} \hat{\beta}_c , \qquad (1.13)$$

де І-одинична матриця

$$D\left(\begin{bmatrix} \hat{\beta}_1\\ \hat{\beta}_2 \end{bmatrix}\right) = \sigma_c^2 \begin{bmatrix} \sum_1 & 0\\ 0 & \sum_2 \end{bmatrix}.$$
 (1.14)

Таким чином, індивідуальна оцінка використовується як псевдоспостереження з відповідною коваріаційною матрицею в якості вагової матриці. Тоді система нормальних рівнянь матиме вигляд:

$$\begin{bmatrix} I', I' \end{bmatrix} \begin{bmatrix} \sum_{1}^{-1} & \emptyset \\ \emptyset & \sum_{2}^{-1} \end{bmatrix} \begin{bmatrix} I \\ I \end{bmatrix} \hat{\beta}_{C} = \begin{bmatrix} I', I' \end{bmatrix} \begin{bmatrix} \sum_{1}^{-1} & \emptyset \\ \emptyset & \sum_{2}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta}_{1} \\ \hat{\beta}_{2} \end{bmatrix}, \qquad (1.15)$$

Система урівнювання псевдоспостережень і нормальних рівнянь виглядає аналогічно, якщо комбінований розв'язок обчислюють по більше ніж двом індивідуальним оцінкам. Комбінація *m* індивідуальних розв'язків може бути записана у вигляді:

$$\left(\sum_{i=1}^{m} X_{i}' P_{i} X_{i}^{-1}\right) \hat{\beta}_{c} = \sum_{i=1}^{m} X_{i}' P_{i} y_{i} .$$
(1.16)

Ця суперпозиція нормальних рівнянь можлива, якщо серії індивідуальних спостережень є незалежними і якщо матриця дисперсії має діагональну форму.

Оцінка одиниці ваги для об'єднаного розв'язку може бути обчислена за формулою [15]:

$$\hat{\sigma}_{c}^{2} = \left(\sum_{i=1}^{m} \hat{\sigma}_{i} f_{i} + \sum_{i=1}^{m} \left(\hat{\beta}_{c} - \hat{\beta}_{i}\right)' X_{i}' P_{i}' X_{i}' \left(\hat{\beta}_{c} - \hat{\beta}_{i}\right)\right) / f_{c}, \qquad (1.17)$$

де $f_i = n_i - u_i$ – число ступенів свободи індивідуальних розв'язків i,

n_i – число спостережень для індивідуального розв'язку i,

u_i – число невідомих для індивідуального розв'язку *i*,

 $f_c = n_c - u_c -$ число ступенів свободи комбінованого розв'язку,

 $n_c = \sum_{i=1}^m n_i$ – загальне число спостережень,

и_с – загальне число невідомих.

1.3 Системи відліку та їх реалізації

Оскільки одним з основних завдань нашого дослідження є створення комбінованого розв'язку для реалізації національної системи відліку, розглянемо детальніше існуючі системи відліку, їхні реалізації та методику створення.

На сьогоднішній день виділяють три види систем відліку: міжнародні, материкові та національні. Загальноприйнятими міжнародними системами відліку

 ϵ ITRS, WGS-84 та ПЗ-90. До материкових систем відліку відносять NAD83 та ETRS. Крім міжнародних та материкових, існують ще національні системи відліку, які ϵ згущенням міжнародних та материкових систем відліку ITRS та ETRS.

Світова геодезична система WGS-84, розроблена Військово-картографічним агентством Міністерства оборони США, включає в себе параметри загальноземного еліпсоїда, модель геоїда, модель гравітаційного поля Землі, значення гравітаційної сталої, значення швидкості світла та інші важливі константи, необхідні для геодезичних вимірювань і навігації з використанням глобальної системи координат [118].

Система відліку ПЗ-90, створена Топографічною службою Збройних сил Російської Федерації без інтеграції i3 західними країнами, включає фундаментальні астрономічні і геодезичні сталі, характеристики координатної основи (параметри земного еліпсоїда, координати пунктів, що закріплюють систему, параметри зв'язку з іншими системами координат), моделі нормальних і аномальних гравітаційних полів Землі, локальні характеристики гравітаційного поля (висоти квазігеоїда над загальноземним еліпсоїдом і аномалії сили тяжіння). Її координати закріплені пунктами Космічної геодезичної мережі, побудованої по фотографічним, доплерівским, далекомірним і альтиметричним спостереженням геодезичних супутників ГЕОИК-1, ЭТАЛОН, ГЛОНАСС та ін. Похибка взаємного положення пунктів при відстанях між ними до 10 000 км не більше 30 см [135].

Аналогом системам відліку WGS-84 та ПЗ-90 є система ITRS, яка створена Міжнародною службою обертання Землі IERS та прийнята IAU в 1991 році. Ця система відліку обертається разом з Землею відповідно до її руху в просторі. ITRS не накладає умову обертання горизонтальних переміщень, це означає, що ця величина не прив'язана до будь-якої конкретної тектонічної плити. У такій системі розташовані на твердій поверхні Землі точки мають координати, які зазнають лише невеликих змін в часі, в зв'язку з геофізичними ефектами (тектонічні або приливні деформації). Свропейська Глобальна Система відліку ETRS89 була прийнята підрозділом Міжнародної асоціації геодезії IAG – EUREF, після першої резолюції, яка проходила в 1990 році у Франції. ETRS89 збігається з ITRS на епоху 1989.0 і прикріплена до стійкої частини Євразійської плити. Ця система рекомендована і використовується для відображення геодезичних пунктів в Європі. Оскільки 1989.0 ETRS89 і ITRS розходяться через дрейф континентів зі швидкістю близько 2.5 см в рік. На сьогодні дві системи координат відрізняються приблизно до 60 см.

Реалізацією міжнародної глобальної системи відліку ITRS є відлікові основи ITRF. ITRF є набором фізичних точок (станцій) з точно визначеними координатами в певній координатній системі, прикріпленій до ITRS. Відомо чотири основні методи, що застосовуються для визначення ITRF-координат: GNSS, VLBI, SLR, і DORIS. Оскільки мережі спостережуваних станцій обладнані приладами, що постійно розвиваються і період даних, доступних з часом збільшується, ITRF постійно оновлюється. Тринадцять реалізацій ITRS було створено з 1988 року, останньою є ITRF2014 (табл. 1.1).

Таблиця 1.1

Назва	Епоха	Українські станції
1	2	3
ITRF88	1984.0	-
ITRF89	1984.0	-
ITRF90	1984.0	-
ITRF91	1984.0	-
ITRF92	1984.0	-
ITRF93	1984.0	-
ITRF94	1984.0	-
ITRF96	1984.0	-
ITRF97	1984.0	-

Реалізації ITRS

1	2	3		
ITRF2000	1997.0	GLSV(Голосієво, м. Київ)		
ITRF2005	2000.0	GLSV(Голосієво, м. Київ), UZHL (м. Ужгород), POLV (м. Полтава)		
ITRF2008	2005.0	GLSV(Голосієво, м. Київ), КНАК (м. Харків), МІКL (м. Миколаїв), POLV (м. Полтава), SULP (м. Львів), UZHL (м.Ужгород)		
ITRF2014	2010	GLSV (Голосієво, м. Київ), КНАК (м. Харків), КТVL (смт. Кацівелі, АР Крим), МІКL (м. Миколаїв), POLV (м. Полтава), SULP (м. Львів), UZHL (м.Ужгород)		

На сьогоднішній день також є дві реалізації WGS84:

• стара реалізація, яка базується на військово-морській навігаційній супутниковій системі (U.S. Navy Navigation Satellite System), широко відомій як DOPPLER Transit, і надає координати станції з точністю близько одного метра.

• нові реалізації WGS84(G730, G873, G1150 і G1674) на основі даних GPS.

У 1994 році Міністерство оборони США вперше ввело реалізацію WGS-84, яка повністю базувалася на GPS вимірах. Ця нова реалізація відома як WGS-84 (G730), де буква G відповідає GPS, а «730» позначає номер GPS тижня. Всі нові WGS84 реалізації до G1674 збігаються з ITRF приблизно на 10-сантиметровому рівні. Проте, реалізація G1674 прийняла ITRF2008 координати і швидкості координат більше половини базових станцій. Таким чином, ITRF2008 і WGS84 (G1674) збігаються на рівні сантиметра.

Аналогічна ситуація з російською ПЗ-90, яка базується на основі даних ГЛОНАСС і яку теж змінюють з певним плином часу. У листопаді 2007 року система була змінена і стала називатися ПЗ-90.02. Параметри її змінилися відразу на кілька метрів, але зате вона стала майже збігатися з ITRF і WGS84. Чергова зміна відбулася у 2011 році; вона стала називатися ПЗ-90.11 [135].

Внаслідок наявності часових змін координат в ITRF, що становить до 2 см/рік для Центральної Європи, Підкомісія EUREF і VIII робоча група CERCO вибрали близько 35 європейських пунктів SLR і VLBI з мережі ITRF-89, координати яких є на епоху 1989.0, і визначили систему координат ETRF89, яка є відліковою основою ETRS89. Сім параметрів трансформації від систем ITRF різних епох до системи ETRF89 поставляються IERS. Вважається, що система ETRF повинна бути якомога ближчою (з точністю до 1 м) до супутникової всесвітньої геодезичної системи WGS-84. При використанні цих систем в навігації така точність необов'язкова, але для точних геодезичних і геодинамічних вимірювань параметри трансформації систем повинні визначатися постійно на основі GPS спостережень. Система координат ETRF89, за визначенням, обертається разом зі стабільною частиною території Європи, а зв'язки між станціями залишаються незмінними. Внаслідок цього ETRF є зручною для виконання практичних геодезичних і картографічних робіт в Європі. Недоліком системи є її обертання щодо системи ITRF (до декількох сантиметрів за рік), що ускладнює її застосування для робіт в таких областях, як супутникова геодезія, фізична геодезія і геодинаміка. Тому необхідно регулярне визначення (один раз в десять років, після закінчення яких Європа провернеться на кілька дециметрів) параметрів перетворення між системами ETRF і WGS-84. При цьому слід мати на увазі, що ITRF узгоджується з WGS-84 на рівні дециметрів, що для більшості завдань навігації такі малі відмінності несуттєві, а використання даних з декількох постійних GPS-пунктів на території Європи дозволяє легко і безперервно визначати точні параметри перетворення між ETRF і WGS-84.

1.3.1. Геодезичні мережі відлікових основ

Оскільки складовими частинами кожної відлікової основи є фізичні точки (станції), то ключовими інструментами у підтримці ITRF є мережа перманентних станцій IGS, для ETRS89 – це мережа перманентних станцій EUREF – EPN, для реалізації національної системи відліку відповідно це національні референцні GNSS-мережі. Розглянемо детальніше кожну з цих мереж.

IGS (International GNSS Service) – добровільне об'єднання більш ніж 200 агентств, які з 1994 року займаються збором даних GPS, ГЛОНАСС та інших супутникових навігаційних систем з постійно працюючих станцій спостережень, розташованих по всьому світу [63].

Основними продуктами IGS є (табл. 1.2) [64]:

- ефемериди GNSS-супутників;
- параметри орієнтації Землі;
- координати та швидкості координат референцних станцій;
- інформація про годинники супутників та станцій;
- оцінки зенітних тропосферних затримок;
- глобальні карти іоносфери.

Таблиця 1.2

Тип,	даних	Точність	Час очікування	Оновлення	Інтервал вибірки
	1	2	3	4	5
GPS ефемериди (орбіти та годинники)					
	орбіти	~ 100 см	В реальному		
Broadcast	Суп.год.	~ 5ns RMS ~2.5ns SDev	часі	-	щодня
Ultra-Rapid	орбіти	~ 5 см	R peau uowu	на 03 00 15	15 хв
(прогнозовані)	Суп.год.	~3 ns RMS ~1.5ns SDev	часі	11 UTC	
Ultra-Rapid	орбіти	~ 3 см		на 03, 09, 15, 21 UTC	15 хв
(кінцеві)	Суп.год.	~150 ps RMS ~50 ps SDev	3-9 годин		
	орбіти	~ 2,5 см		В 17 год UTC щодня	15 хв
Rapid	Суп. та ст.	~75 ps RMS	17-41 годин		5 V B
	год.	~25 ps SDev			<i>J</i> лв.
	орбіти	~ 2,5 см			15 хв.
Final	Суп. та ст.	~75 ps RMS	12-18 днів	Щочетверга	Суп: 30 сек
	год.	~20 ps SDev			Ст: 5 хв.
Ефемериди супутників ГЛОНАСС					
Final		~ 3 см	12-18 днів	Щочетверга	15 хв.
Геоцентричні координати станцій спостереження					
Кінцеві	горизонтальні	3 мм	11-17 лнів	Шосерели	Шотижня
координати	вертикальні	6 мм	ттт, дшь	щосереди	
Кінцеві	горизонтальні	2 мм/рік	11-17 днів	Щосереди	Шотижня
швидкості координат	вертикальні	3 мм/рік			

Типи продуктів IGS

Параметри орієнтування Землі

1		2	3	4	5
Ultra-Rapid (прогнозовані)	Полярний рух Шв. пол. руху Довжина дня	~ 200 µas ⁽¹⁾ ~ 300 µas / день ~ 50 µs ⁽²⁾	В реальному часі	на 03, 09, 15, 21 UTC	щоденні інтеграції в 00 року 06 12, 18 UTC
Ultra-Rapid (кінцеві)	Полярний рух Шв. пол. руху Довжина дня	~ 50 µas ~ 250 µas / день ~ 10 µs	3-9 годин	на 03, 09, 15, 21 UTC	щоденні інтеграції на 00, 06, 12, 18 UTC
Rapid	Полярний рух Шв. пол. руху Довжина дня	~ 40 µas ~ 200 µas / день ~ 10 µs	17-41 годин	в 17 UTC щодня	щоденні інтеграції в 12 UTC
Final	Полярний рух Шв. пол. руху Довжина дня	~ 30 µas ~ 150 µas / день ~ 10 µs	11-17 днів	Щосереди	щоденні інтеграції в 12 UTC
Атмосферні параметри					
Фінальні зенітні тропосферні 4 мм затримки			<4 тижнів	Щодня	5 хв.
Final іоносферна	Final іоносферна карта 2-8 ТЕС ~ 11 днів Щотижня		2 години (5 ⁰ x2,5 ⁰)		
Rapid іоносферна карта 2-9 ТЕС < 24 годин Щодня		Щодня	2 години (50х2,50)		

Складові IGS є ключовими операційними елементами організації. Складові компоненти включають такі об'єкти, як: Центри обробки даних та аналізу (таб.1.3) [65], які забезпечують доступ до продуктів найвищої якості; Центральне бюро, яке займається щоденною адміністративною роботою IGS; Адміністративна рада та Асоційовані члени, які завдяки своїм зусиллям підтримують організацію; а також пілотні проекти та робочі групи, які постійно спрямовують організацією вперед.

Таблиця 1.3

32

Організація	Абревіатура	Країна
1	2	3
Природні ресурси Канади	EMR	Канада
Уханьский університет	WHU	Китай
Геодезична обсерваторія Печни	GOP-RIGTC	Чехія
Космічне агентство CNES	GRG	Франція
Європейське космічне агентство/ESOC	ESA/ESOC	Німеччина
GeoForschungsZentrum	GFZ	Німеччина
Свропейський центр визначення орбіт	CODE	Швейцарія
Лабораторія реактивного руху	JPL	CIIIA
Массачусетський технологічний інститут	MIT	США
Національна геодезична служба	NGS	CIIIA
Інститут океанографії імені Скріппса	SIO	CIIIA
Американська морська обсерваторія	USNO	CIIIA

Центри аналізу IGS

Основою IGS є глобальна мережа з понад 400 перманентних станцій, що відстежують GPS, ГЛОНАСС, Galileo, BeiDou, QZSS та SBAS (рис. 1.1).

Рисунок 1.1. IGS мережа перманентних станцій [63]

IGS збирає, зберігає та розповсюджує набори даних спостережень з достатньою точністю для досягнення цілей широкого кола наукових та

інженерних застосувань і досліджень. Продукти IGS підтримують наукові дослідження, такі як покращення і розширення Міжнародної служби обертання Землі (IERS), Земної референцної системи (IERS), моніторинг деформацій земної поверхні, обертання Землі, визначення орбіт наукових супутників та моніторинг іоносфери. Додатковим аспектом є те, що продукти IGS слугують для ущільнення ITRF на регіональному рівні. Це досягається за допомогою строгої комбінації регіональних чи локальних мережевих розв'язків, що використовують SINEX формат.

EPN (European Permanent Network) – є добровільним об'єднанням більше 100 самофінансуючих установ, університетів та науково-дослідних інститутів у більш ніж 30 європейських країнах [32]. Станом на 03 липня 2017 р. частиною Європейської мережі перманентних станцій є 321-на постійно діюча GNSSстанція (у тому числі 1 в неактивному стані) (рис. 1.2).

Рисунок 1.2. Мережа станцій ЕРN [32]

В Європі, окрім станцій ЕРN, існують кілька сотень інших перманентних (референцних) GNSS-станцій спостереження. І з метою згущення мережі,

оперативні центри аналізують спостереження переважної більшості цих станцій. Оперативні центри є агентствами, які відповідають за завантаження GNSS-даних від однієї або більше станцій спостереження до інформаційних центрів EPN (для файлових даних) та кластерів (для потоку даних в режимі реального часу). Це завантаження даних здійснюється згідно інструкції [57]. Окремі інформаційні центри, використовуючи політику відкритих даних, надають доступ до даних станцій EPN. Вони отримують дані GNSS від оперативних центрів і поширюють їх безкоштовно для користувачів:

• Щоденні і щогодинні 30 секундні дані EPN у форматі RINEX: локальні інформаційні центри (в основному національні) та регіональні інформаційні центри (виключно EPN); дані завантажують через анонімний FTP.

• Щоденні архівні 30 секундні дані EPN у форматі RINEX: архівний репозиторій (виключно EPN); дані завантажують через анонімний FTP.

• Дані ЕРN в режимі реального часу у форматі RTCM: локальні кастери (в основному національні) і регіональні кластери (виключно EPN); потоки даних, доступні за допомогою програмного забезпечення Ntrip-клієнт.

• Дані ЕРN 15-хв., близькі до реального часу 1 Гц. у форматі RINEX: Високошвидкісний інформаційний центр; дані завантажують через анонімний FTP.

Доступ до щоденних і щогодинних даних всіх станцій ЕРN забезпечує інформаційний центр (RDC), який розташований в ВКG (Федеральному агентстві з картографії та геодезії, Німеччина). Потоки даних в режимі реального часу надаються регіональними EUREF кастрами (RB), які розташовані в ВКG (Федеральному агентстві з картографії та геодезії, Німеччина), ASI (Італійському космічному агентстві) і ROB (Королівській обсерваторії Бельгії).

Дані спостережень з EPN аналізуються на різних рівнях:

1. Локальні операційні центри (LAC) регулярно оцінюють щоденні і щотижневі позиції станцій і зенітні тропосферні затримки. Ці розв'язки використовують в якості вхідних даних для отримання щоденних/щотижневих комбінованих позицій EPN та комбінованого розв'язку тропосфери. Відповідно

до правил та керуючись принципами [57], створених в рамках Міжнародної служби GNSS (IGS) [63] і доповнених Технічною робочою групою EUREF [34], різні LAC окремо обробляють чітко визначені підмережі, на які поділяється EPN.

2. Операційні центри, що спеціалізуються на розв'язуванні окремих задач (DAC). DAC аналізують дані з GNSS-станцій (у тому числі з станцій EPN), щоб зробити внесок у продукти EPN, які знаходяться в стадії розробки, або в продукти, які створені робочими групами EUREF (наприклад, переробка, згущення, контроль тощо).

Надійність координат мережі EPN залежить від загальної тривалості спостережень та можливості використання інших космічних методів спостережень. Координати EPN-станцій доступні у двох референцних системах – ITRS та ETRS89 [129].

1.3.2. Мережі згущення EPN як основа національних систем відліку

На сьогоднішній день майже всі країни Європи мають або створюють власні мережі згущення ЕРN (рис. 3.1). Основною метою згущення є реалізація об'єднаного в часі розв'язку: однорідних високоякісних координат та швидкостей координат в національній системі відліку (ETRS89) для густої мережі GNSSстанцій. Швидкості координат, які обчислюються в національних системах відліку, є корисними для загальних і специфічних тектонічних досліджень, а також дають краще розуміння процесів в тектонічно активних районах, таких як Середземноморський сейсмічний пояс, до якого належить і Карпатська складчаста область. Ущільнення ЕРN має величезний потенціал як для геодезії, так і для наук про Землю. Всі дії з ущільнення ЕРN вимагають ефективної співпраці між постачальниками даних та геофізичною спільнотою.

a

б

В

ľ

Д

e

€

Ж

3

И

й

к

Л

Μ

Н

0

р

Рисунок 1.3. Мережі згущення EPN [33]

Опрацювання спостережень з вищенаведених мереж згущення ЕРМ виконуються в операційних центрах за допомогою різних наукових програмних пакетів (табл. 1.4).

Таблиця 1.4

Meneura		Програмне
тережа	Операціиний центр	забезпечення
1	2	3
GRF(Німечинна)(рис1.3, а)	ВКС (Німечинна)	Bernese
IBE (Іспанія) (рис1.3, б)	IGE (Іспанія)	Bernese
SGN (Франція) (рис1.3, в)	IGN (Франція)	Bernese

Мережі згущення EPN та їх аналітичні центри

1	2	3
АМО (Австрія) (рис1.3, г)		
MON (Моніторинг Близького		
Сходу) (рис1.3, г)		
	OLG (Австрія)	Bernese
CEG (перманентна мережа CEGRN)		
(рис1.3, д)		
GRE (Греція) (рис1.3, е)		
SGO (Угорщина) (рис1.3, є)	SGO (Угоршина)	Bernese
HGN (Угорщина) (рис1.3, ж)	500 (Уторщини)	Defficie
UPA (Італія) (рис1.3, 3)	UPA (Італія)	Bernese
AGR (Нідерланди) (рис1.3, и)	AGR (Нідерланди)	
ARA (Іспанія та Португалія)	АRA (Іспанія)	Bernese
(рис1.3, i)		Defficie
ASG-EUPOS (Польща) (рис1.3, ї)	ASG (Польща)	Bernese
BGF (Англія) (рис1.3, й)	BGF (Англія)	Bernese
BUL (Болгарія) (рис1.3, к)	BUL (Болгарія)	GAMIT/GLOBK
САТ (Каталонія) (рис1.3, л)	САТ (Іспанія)	Bernese
CZE (Чехія) (рис1.3, м)	CZE (Чехія)	Bernese
EST (Естонія) (рис1.3, н)	EST (Естонія)	Bernese
GGI (Латвія) (рис1.3, о)	GGI (Латвія)	Bernese
GKU (Словачинна) (рис1.3, п)	GKU (Словачинна)	Bernese
NGI (Бельгія) (рис1.3, р)	NGI (Бельгія)	Bernese

Для дослідження особливостей створення національних систем відліку були розглянуті їх реалізації на прикладі 12 країн: Австрії [36], Бельгії [20], Німеччини [37], Іспанії [38], Франції [39], Угорщини [43], Італії [12], Нідерландів [42], Польщі [101], Португалії [41], Словаччини [40] та Норвегії [85] (табл.1.5).

Таблиця 1.5

Країна	Референцна система	К-сть ЕР станцій
Австрія	ETRF00	10
Бельгія	ETRF2000	5
Німеччина	ETRS89	20
Іспанія	ETRF05	35
Франція	E0TRF93	19
Угорщина	ETRF00	5
Італія	ETRF2000	31
Нідерланди	ETRF2000(R05)	5
Польща	ETRF2000	13
Португалія	ETRF89	4
Словаччина	ETRF2000	19
Норвегія	ETRF89	8

Національні референцні системи

Всі ці країни реалізовували національні системи відліку, керуючись інструкцією по згущенню EPN [19]. Основними положеннями цієї інструкції є:

1. Використання як мінімуму п'яти станцій IGS/EPN класу А.

- 2. Використання орбіт IGS та ПОЗ.
- 3. Використання абсолютних калібрувань антен.
- 4. Використання методу мінімальних обмежень.

Метод мінімальних обмежень базується на урівнюванні регіональних розв'язків до ITRF за допомогою параметрів трансформації Гельмерта, які повинні бути обчислені, використовуючи вибрану підмножину станцій ITRF.

Зв'язок між регіональним розв'язком (X_R) та ITRF (X₁) для вибраних станцій може бути записаний як:

$$X_1 = X_R + A \times 1, (1.18)$$

де *A* і є відповідно матрицями часткових похідних і векторів 7 параметрів трансформації:

$$A = \begin{pmatrix} \cdot & \cdot \\ 1 & 0 & 0 & x_{a}^{i} & 0 & z_{a}^{i} & -y_{a}^{i} \\ 0 & 1 & 0 & y_{a}^{i} & -z_{a}^{i} & 0 & x_{a}^{i} \\ 0 & 0 & 1 & z_{a}^{i} & -y_{a}^{i} & -x_{a}^{i} & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix},$$

$$1 = (T_{x}, T_{y}, Tz, R_{x}, R_{y}, R_{z}, D)^{T}.$$
(1.19)

Метод мінімальних обмежень полягає у використанні матриці $B = (A^T A)^{-1} A^T в$ такий спосіб, що X_R буде представлена в тій самі системі що й розв'язок ITRF X_1 . Тому, для представлення X_R в ITRF на певному E_1 рівні, «визначення датуму», рівняння може бути записано як:

$$B(X_1 - X_R) = 0(E_1), \qquad (1.20)$$

де E_1 є матрицею дисперсії.

Для нормальних рівнянь ми можемо записати:

$$B^{T}E_{1}^{-1}B(X_{1}-X_{R})=0.$$
 (1.21)

Використовуючи продукти IGS (орбіти, годинники тощо), вихідні нормальні рівняння системи регіонального GPS розв'язку перед додаванням будь яких обмежень можна записати як:

$$N_{unc}(DX) = K , \qquad (1.22)$$

де $DX = X - X_{apr}$,

Х – невідомий вектор,

Xapr – вектор апріорних значень,

N_{unc} – нормальна матриця без обмежень,

К – правосторонній вектор.

Вибираючи підмножину станцій ITRF (X_1), рівняння мінімальних обмежень (або визначення вихідних даних) є:

$$B^{T} E_{1}^{-1} B(DX) = B^{T} E_{1}^{-1} B(X_{1} - X_{apr}).$$
(1.23)

Додавши (1.22) і (1.23) отримуємо:

$$(N_{unc} + B^T E_1^{-1} B)(DX) = K + B^T E_1^{-1} B(X_1 - X_{apr}).$$
(1.24)

Рівняння з мінімальними обмеженнями, представлене в ITRF на вибраних станціях є:

$$X = (N_{unc} + B^T E_1^{-1} B)^{-1} (K + B^T E_1^{-1} B (X_1 - X_{apr})) + X_{apr}.$$
 (1.25)

5. Трансформація з системи ITRFуу до ETRS89 повинна відбуватися на основі офіційних опублікованих параметрів [17].

З проведеного аналізу створення систем відліку, різниці координат між національними системами відліку та офіційним розв'язком ETRF знаходяться в межах 10мм по східній компоненті (Е), 9мм по північній компоненті (N) та 13мм по висотній компоненті (H).

Основними відмінностями в реалізаціях різних систем відліку були:

- різні референцні епохи та ETRF врівноваження;
- різні моделі аналізу та програмні пакети;
- різні обладнання станцій.

Розглянемо детальніше процедуру згущення EPN на прикладі двох країн Італії та Норвегії. Ми вибрали ці дві країни, так як процедури реалізації їх національних систем відліку є аналогічними для всіх інших країн (Італія), а також мають певну цікаву для нас специфіку (Норвегія).

Мережа Італії RDN налічує понад 100 станцій. Ключовою характеристикою цієї мережі є її динамічність, тобто координати визначаються періодично для врахування природних змін в земній корі. Обробка мережі виконувалася в програмному пакеті Bernese V5.1, але для верифікації в іншому центрі аналогічна обробка виконувалася в пакетах Gipsy-Oasis II та Gamit-Globk. Використання декількох програмних пакетів було обумовлено геодезичною інфраструктурою для тектонічних та геодинамічних цілей і рекомендовано [12] для перевірки якості грубих помилок та розв'язку, виявлення зменшення ефекту ШУМУ В індивідуальних розв'язках. Процедура створення національної системи відліку **ETRF2000** відповідала повністю інструкції EUREF. Лля обробки використовувалися файли, які мали не менше 12 годин спостережень. Для реалізації референцної системи ETRF2000 було використано 13 перманентних (референцних) станцій EPN класу А. Автор відмітив особливості обробки в Gamit-Globk, в якій максимальна кількість станцій для опрацювання є 99. Хоча мережа мала менше 99 станцій, її поділили на дві підмережі. Пізніше ці підмережі об'єднали за допомогою підпрограми Globk. Окремо обчислили мережу без

поділу на підмережі. При цьому різниці між двома розв'язками були на рівні 0.1 мм, максимальна різниця складала 0.8 мм.

Відмінною є процедура створення національної ETRF2000 для Норвегії [85]. В цій стратегії точності моделі тектонічних рухів (NUVEL) при створені комбінованого розв'язку було недостатньо, оскільки горизонтальні швидкості координат 3 мм/рік приводять до помилки положення більше 3 см за 10 років. Для виключення цієї помилки було обчислено новий вектор ротації для Євразійської плити на основі 19 вибраних ITRF швидкостей координат станцій на території Норвегії. Кроки обробки полягали в наступному:

- 1. Обчислення координат у системі ITRF на центральну епоху.
- Трансформування отриманих координат ITRF до системи ETRF89, враховуючи при цьому замість швидкості тектонічної плити обчислений вектор ротації.

Проаналізувавши процедуру згущення EPN для вище перелічених країн та враховуючи виникненні особливості, нами запропоновано власну методику реалізації національної системи відліку, яка полягає в наступному:

1. використанні всіх доступних пунктів IGS/EPN класу А;

2. використанні фінальних комбінованих орбіт IGS, включаючи відповідні параметри обертання Землі;

3. застосуванні наукових програмних пакетів Bernese або Gamit-Globk;

4. використанні координат референцних пунктів в тій же системі, в якій задані орбіти (ITRF-xx);

5. координати референцних станцій потім перетворюються до епохи спостережень з використанням швидкостей руху;

6. обчисленні координат на центральну епоху спостережень;

7. обчисленні середніх значень швидкостей координат мережі станцій;

8. обчисленні вектора ротації частини Євразійської плити в межах території України на основі вибраних швидкостей координат GNSS-станцій.

9. перетворенні координат до системи ETRF2000, використовуючи обчислені середні швидкості руху станцій і обчислений вектор ротації частини Євразійської плити в межах території України.

ВИСНОВКИ ДО РОЗДІЛУ 1

1. На основі аналізу способів створення комбінованих розв'язків, які застосовуються в геодезії, встановлено, що для реалізації об'єднаного в часі розв'язку (тільки метод GNSS) необхідно використовувати параметричний метод.

2. Виконано огляд систем відліку та відлікових основ, які на сьогоднішній день застосовують в геодезії, а також організацію та роботу національних мереж референцних GNSS-станцій Європи, що дало можливість розглянути підходи до створення національної загальноєвропейської референцної системи ETRS89 та її реалізації ETRF2000.

3. Запропоновано власну методику згущення ETRF2000 до національних масштабів, особливістю якої є визначення параметрів ротації частини Євразійської плити в межах території України.

РОЗДІЛ 2

ІНСТРУМЕНТАРІЙ ОПРАЦЮВАННЯ ДАНИХ СУПУТНИКОВИХ СПОСТЕРЕЖЕНЬ ДЛЯ МЕРЕЖ РЕФЕРЕНЦНИХ GNSS-СТАНЦІЙ

Основним інструментарієм для опрацювання та аналізу даних з мережі референцних GNSS-станцій є спеціальні програмні забезпечення. В залежності від поставлених цілей і точності їх розділяють на дві категорії: інженерні та наукові.

До інженерного ПЗ відносяться всі програмні пакети, які постачає в комплекті з супутниковим приймачем кожна фірма-виробник. Найбільш поширеними серед них є Leica Geo Office, Trimble Business Center та Topcon Tools. Але такі комерційні програми не дозволяють отримати максимально можливу точність для GNSS та проводити обробку великих геодезичних мереж. Для усунення зазначеного недоліку розроблені універсальні наукові програми, що дозволяють виконувати поетапну обробку даних з проміжним аналізом отриманих результатів та базуються на більш строгому модельному представленні.

До наукового ПЗ відносять: Bernese (Швейцарія), GYPSY-OASIS (США) та GAMIT-GLOBK (США).

Програмне забезпечення Bernese [24] було розроблене в Астрономічному інституті Бернського університету (Швейцарія). Це програмне забезпечення вважається еталонним, оскільки переважна більшість центрів аналізу EPN (таб. 2.1) використовує його для високоточного опрацювання спостережень, виконаних на перманентних GNSS-станціях [109].

Програмне забезпечення GYPSY-OASIS (GNSS-Inferred Positioning System and Orbit Analysis Simulation Software) було розроблено Лабораторією NASA. GYPSY-OASIS (GOA) використовує для аналізу дані спостереження із земних орбітальних супутників. GOA також пропонує багато потужних та унікальних програм для моделювань та коваріаційних аналізів ймовірностей [78].

Програмне забезпечення GAMIT-GLOBK розроблено спільно Массачусетським інститутом технологій (МІТ) та Каліфорнійським інститутом океанографії в Сан-Дієго ім. Скриппсів (SIO). GAMIT-GLOBK – це комплекс з двох програмних продуктів. GAMIT [60] – це набір програм для обробки GNSS- спостережень. GLOBK [61] є програмною реалізацією фільтра Кальмана, головною метою якого є об'єднання результатів обробки первинних даних просторово-геодезичних або наземних спостережень.

Точність визначення координат вищенаведеними програмними пакетами становить менше 1 см (1-3 мм).

Таблиця 2.1

Типи програмних пакетів, що застосовуються в центрах аналізу IGS/EPN

Операційні центри	Організація	Bernese	GYPSY- OASIS	GAMIT- GLOBK
1	2	3	4	5
MIT(CIIIA)	IGS			X
JPL (CIIIA)	IGS		Х	
SIO (CIIIA)	IGS			X
CODE (Швейцарія)	IGS	Х		
ЕМК (Канада)	IGS		Х	
ASI (Італія)	EPN		Х	
ВЕК (Німечинна)	EPN	Х		
ВЕV (Австрія)	EPN	Х		
ВКС (Німечинна)	EPN	Х		
СОЕ (Швейцарія)	EPN	Х		
DEO (Нідерланди)	EPN		Х	
GOP (Чехія)	EPN	Х		
IGE (Іспанія)	EPN	Х		
IGN (Франція)	EPN	Х		
LPT (Швейцарія)	EPN	Х		
MUT (Польща)	EPN	Х		
NKG (Швеція)	EPN	X		

1	2	3	4	5
OLG (Австрія)	EPN	Х		
RGA (Сербія)	EPN	Х		
ROB (Бельгія)	EPN	Х		
SGO (Угорщина)	EPN	Х		
SUT (Словаччина)	EPN	Х		
UPA (Італія)	EPN	Х		
WUT (Польща)	EPN	Х		

Оскільки, одним з основних завдань даної роботи є створення комбінованого розв'язку мережі референцних GNSS-станцій України, то для його реалізації було використано програмний пакет GAMIT/GLOBK 10.6. Такий вибір був зумовлений тим, що це програмне забезпечення розповсюджується безкоштовно для наукових установ, регулярно оновлюється та присутній зворотній зв'язок з розробниками. Для апробації отриманих результатів було використано EPN розв'язок, який обчислено програмним пакетом Bernese.

2.1 Опис програмного забезпечення

2.1.1. Програмне забезпечення Bernese

Програмне забезпечення Bernese – це наукове програмне забезпечення, яке відповідає найвищим стандартам якості для геодезичних та інших застосувань на базі Глобальних навігаційних супутникових систем (GNSS) [24]. На сьогоднішній день в Bernese у повні мірі функціонують дві GNSS: американська система глобального позиціонування GPS та російська глобальна навігаційна супутникова система GLONASS. Алгоритм опрацювання двочастотних даних для нових систем, таких як європейська Galileo, китайська BeiDou або японська QZSS вже є розроблений, але ще не повністю впроваджений для оперативної обробки.

Bernese підходить для широкого спектру задач, а саме:

• швидкої обробки локальних та глобальних мереж, використовуючи одно- і двох частотні GNSS-спостереження;

- автоматичної обробки GNSS-мереж;
- обробки даних з великого числа приймачів;
- поєднання різних типів приймачів;
- комбінованої обробки спостережень з різних GNSS;
- моніторингу іоносфери та тропосфери;

• визначення орбіт для GNSS та LEO супутників разом з відповідними параметрами;

• перевірки орбіт SLR.

Вегпезе містить в собі близько 100 програм, які логічним способом можна згрупувати у 6 частин (рис.2.1).

Рисунок 2.1. Функціональна блок-схема стандартної обробки в програмному пакеті Bernese

1. Transfer Part – частина, що включає в себе програми, що пов'язані з передачею RINEX файлів (спостереження, навігаційні повідомлення, метеорологічні файли, файли годинників) в формат Bernese і навпаки, а також

різні дії з цими файлами. Інструменти RINEX дозволяють виділити інформацію з заголовку файлу, генерувати статистичні дані та обробляти спостереження на RINEX рівні.

2. Conversion Part – збирає програми для перетворення бінарних файлів в ASCII формат і навпаки. Додаткові програми дозволяють конвертувати SINEX файли в нормальні рівняння та маніпулювати цими файлами.

3. Orbit Part – частина, що містить всі програми, пов'язані з супутниковими орбітами та параметрами орієнтації Землі. Вона включає в себе генерацію внутрішнього представлення орбіт, інформацію про точні або broadcast ефемериди, оновлення інформації про орбіти, створення точних файлів орбіт, порівняння орбіт, перетворення параметрів орієнтації Землі з ITRS формату в Bernese, а також вилучення інформації про Земний полюс.

4. Processing Part – містить основні програми обробки спостережень. Сюди входить попередня обробка та синхронізація приймача (програма CODSPP), створення вихідних файлів (програма SNGDIF), попередня обробка двочастотних вимірів (програма MAUPRP), оцінка параметрів на основі GPS та/або ГЛОНАСС спостережень (програма GPSEST) і на основі систем нормальних рівнянь (програма ADDNEQ2).

5. Service Part – містить моделювання для GNSS-спостережень (програма GPSSIM), а також ряд інструментів для перегляду бінарних файлів спостереження, перевірки залишків, порівняння та редагування координат, для автоматизованої обробки та багато іншого. Також надається можливість переглядати повідомлення про помилки.

6. Simulation Part – частина, що містить тільки одну програму для створення моделей GPS і GLONASS спостережень на основі статистичної інформації.

Загальні особливості програмного забезпечення розроблені таким чином, щоб відповідати найвищим вимогам точності:

1. Всі спостереження, записані за допомогою високоточних геодезичних приймачів (кодових і фазових), можуть бути оброблені.

2. Одночастотні та двочастотні дані можуть обчислюватися на одному етапі обробки. Використання моделей іоносфери мінімізує вплив іоносферних затримок на координати станцій та інші передбачувані параметри.

3. Дані можуть бути оброблені в режимі подвійних різниць або в режимі точного позиціонування (PPP).

4. Програми оцінки параметрів можуть бути використані для обробки базової лінії/сесії/кампанії/кампаній. Багато різних комплексних розв'язків (наприклад, річні розв'язки координат та параметри обертання Землі) використовують систему нормальних рівнянь, яку можна обчислити без репроцесингу спостережень.

5. Програми обробки підтримують одночасну оцінку великої кількості різних типів параметрів

Таблиця 2.2

Параметри Опис 1 2 Параметри, пов'язані з станцією Координати станції Прямокутні координати X, Y, Z в системі ITRF. Вихідним розв'язком програми також є геодезичний датум (λ , β , h). Швидкість станції У програмі можна визначити швидкості координат станцій, якщо доступна довга часова серія систем нормальних рівнянь, що містять однакові станції. Масштабний Масштабні коефіцієнти для трьох моделей деформацій коефіцієнт земної кори, представлені в глобальних grid файлах, можуть бути обчислені для перевірки моделі та/або для дослідження впливу моделі на параметри, отримані з GNSS. Параметри Можна обчислити параметри перетворення (переміщення, Гельмерта обертання, масштаб) між параметрами координат з різних нормальних рівнянь.

Типи параметрів, що застосовуються в програмному забезпеченні Bernese

1	2			
Параметри калібрування антени				
Зсув фазового	Такі зсуви можуть бути для різних типів космічних			
центру антени	апаратів (наприклад, GPS Block IIA, Block IIR, чи			
	супутники GLONASS).			
Варіації фазового	Фазові моделі можуть бути для кожного окремого			
центру антени	супутника або для різних типів космічних апаратів.			
Параметри,	Похибки координат станції і вертикальної тропосфери			
специфічні для	серед різних GNSS-спостережень може вказувати на			
GNSS	недоліки калібрування антени GNSS-приймача.			
	Параметри атмосфери			
Параметри	Зенітні затримки та градієнтні параметри можуть бути			
тропосфери	введені або розв'язані. Можлива висока тимчасова			
	роздільна здатність, а також зменшення кількості			
	параметрів.			
Іоносферні карти	Регіональні та глобальні іоносферні карти можуть бути			
	визначені. Густина електронів у шарі описується			
	сферичними гармоніками.			
	Параметри орбіт			
Центр мас	Центр маси Землі може бути обчислений (для глобальних			
	аналізів).			
Параметри	Рух полюсів (х і у), UT1-UTC, нутації і прецесії можуть			
орієнтації Землі	бути змодельовані. Для останніх трьох типів параметрів			
	можна обчислити лише дрейфи. Висока роздільна			
	здатність часу можлива.			

2.1.2. Програмне забезпечення GAMIT/GLOBK

GAMIT/GLOBK є комплексним програмним пакетом для аналізу GNSS, який розроблений в МІТ (Массачусетському технологічному інституті), Гарвардсько-Смітсонівському центрі астрофізики, Інституті океанографії Скріппса (SIO) та Австралійському національному університеті, для оцінки координат і швидкостей координат станції, стохастичних або функціональних представлень постсейсмічних деформацій, атмосферних затримок, орбіт супутників та параметрів орієнтації Землі. Приклад стандартної обробки спостережень в програмному пакеті GAMIT/GLOBK представлено на рис. 2.2.

Рисунок 2.2. Функціональна блок-схема стандартної обробки в програмному пакеті GAMIT/GLOBK [59]

Основні файли, які використовуються в наведеній вище обробці, представлено в табл. 2.3.

Таблиця 2.3

Типи файлів, що застосовуються в програмному забезпеченні

GAMIT/GLOBK

Файл	Опис
1	2
RINEX	Файл спостереження RINEX, вхідний файл в <i>makex</i> .
х-файли	Файли спостереження GAMIT ASCII, подібні до RINEX, але час початку/зупинки та інтервал вибірки однаковий для всіх станцій; вихідні файли з <i>makex</i> , вхідні для <i>model</i> .
с- файли	Бінарні GAMIT файли спостережень містять «о-с» і часткові похідні, а також спостереження; вихідні файли з <i>model</i> , вхідні і вихідні для <i>autcln</i> , вхідні для <i>solve</i> .

1	2
q- файли	Повний звіт розв'язку з solve.
GAMIT h-file	Необмежені вільні розв'язки і коваріації з solve.
GLOBK h-file	Бінарний h-файл для GLOBK.
org file	Звіт розв'язку з <i>glorg</i> .

З блок-схеми видно, що GAMIT/GLOBK складається з двох окремих пакетів GAMIT та GLOBK.

Пакет GAMIT включає в себе метод найменших квадратів для оцінки положень набору станцій, параметрів орбіти та параметрів обертання Землі, зенітних затримок та фазових неоднозначностей. На сьогоднішній день GAMIT використовується для отримання оцінок та відповідних коваріаційних матриць («квазі-спостережень») положень станції, параметрів орбіти та обертання Землі, які потім вводяться в GLOBK або подібні програми для об'єднання даних з іншими мережами або епохами.

GAMIT складається з різних програм, які виконують функції:

• підготовки даних для обробки (makexp i makex);

• генерації орбіт та ротаційних значень для супутників (arc, yawtab);

• інтерполяції часових та локальних значень моделей атмосфери та навантажень (grdtab);

• обчислення поправок спостережень та часткових похідних від геометричних моделей (*model*);

• виявлення пропусків в даних спостережень (*autcln*);

• проведення розв'язку методом найменших квадратів (solve).

Хоча модулі програм можна запускати індивідуально, проте вони об'єднуються через потоки даних таким чином, щоб більшість обробки виконувалась за допомогою shell скриптів та послідовності batch файлів, встановлених модулем драйвера (*fixdrv*) для моделювання, редагування та оцінки.

Пакет GLOBK є фільтром Кальмана, основною метою якого є експериментальне об'єднання різних типів геодезичних розв'язків, таких як GNSS,

VLBI і SLR. Фільтр Кальмана (еквівалентний послідовному методу найменших квадратів, якщо в розв'язку немає стохастичних параметрів), оперує коваріаційними матрицями, а не нормальними рівняннями, і тому вимагає вказувати вільні апріорні обмеження для кожного параметру, що оцінюється.

В обчисленні параметрів на основі методу найменших квадратів, звичайною характеристикою точності є χ^2 (chi-квадрат), який визначається для некорельованих даних як сума квадратів різниць кожного спостереження (спостережуване значення мінус обчислене значення), поділена на задану невизначеність. Значення χ^2 зазвичай нормалізується шляхом ділення на «ступені свободи» – *df* (кількість спостережень – кількість оцінюваних параметрів), так що ідеальне значення для правильно зважених, незалежних випадкових спостережень становить 1.0.

Приріст χ^2 (chi-квадрат, chii) обчислений програмою globk, коли H-файли об'єднані, відображає непослідовність у встановленні координат поточного розв'язку і оцінок нового H-файлу, і зазвичай може бути простежений в часових рядах. Якщо дані з усіх точок належним чином оцінені по їх короткостроковому розкиду, значення nrms з часових рядів і прирісту chi-квадрату має бути ~ 1.0. Менше значення приросту chi – квадрат буде з'являтися, коли є невеликі надмірності або якщо є дані, з заниженими оцінками, які дозволяють більш реалістично оцінити швидкості координат. Значення більше зазначеного з'являться, якщо сігми h-файлів занадто малі або є некомпенсовані залишки в оцінці координат. Вони повинні бути знайдені за допомогою часових рядів і виправлені.

Аналогічно до GAMIT, пакет GLOBK також працює через окремі програми, які виконують функції:

• комбінування квазі-спостережень – GAMIT/GLOBK "h-файлів" або міжнародно прийнятий формат SINEX з різних мереж та/або епох (*glred чи globk*);

• накладання на розв'язок системи відліку, що відповідає науковій цілі (glorg);

globk i glred є однією і тією ж програмою, яку просто застосовують в різних режимах: glred зчитує дані з одного дня за один раз для створення часових рядів, globk для складання кількох епох, щоб отримати середнє положення та/або швидкість.

Можливості пакету GLOBK представлено трьома основними режимами:

1. поєднання окремих сесій (наприклад, днів) спостережень для отримання оцінки координат станції, усереднених по багатоденних опрацюваннях для GNSS-аналізу;

2. поєднання усереднених координат станції, отриманих з декількох років спостережень, для оцінки швидкості координат станції;

3. незалежна оцінка координат з окремих сесій, щоб генерувати оцінку часових рядів точності вимірювань протягом декількох днів або років.

Під час опрацювання спостережень з мережі станцій в GAMIT/GLOBK слід пам'ятати, що цей програмний пакет має обмеження щодо кількості станцій, що обробляються (99 станцій), тому обробку великих мереж розділяють на декілька підмереж, по 30-50 станцій в кожній.

2.2 Вхідні дані з мереж референцних GNSS-станцій

Для створення об'єднаного в часі розв'язку були використані результати спостережень з мережі активних референцних GNSS-станцій України за 2013-2016 роки (1721-1929 GPS-тижні). На сьогоднішній день мережа України налічує ~ 200 станцій, з яких понад 120 (рис. 2.3) безперервно насилають свої дані в центр аналізу LPI (кафедра вищої геодезії та астрономії Національного університету «Львівська політехніка»).

Рисунок 2.3. Мережа активних референцних GNSS-станцій України [53]

До національної мережі референцних GNSS-станцій України входить кілька приватних мереж активних референцних станцій. А саме: ZAKPOS, TNT-TPI, System Solutions. Повний перелік станцій та мереж, до яких вони входять наведено в Додатку А.

Перша в Україні мережа активних референцних станцій – це мережа ZAKPOS.

ZAKPOS – це служба визначення положення (Transcarpathian Positioning Service), діяльність якої спочатку поширювалася лише на територію Закарпатської області [53]. Згодом ZAKPOS стає регіональною GNSS-системою наземного базування, що повністю створювалася за європейськими стандартами EUPOS [31] і направлена на забезпечення GNSS-даними та поправками до них в реальному часі (RTK) для високоточного визначення місцеположення. На референцних станціях мережі ZAKPOS регулярні GNSS-спостереження розпочалися 04 лютого 2009 р. (35 GPS день, 1517 GPS-тиждень). Схема розташування станцій мережі ZAKPOS станом на кінець 2017 року приведена на рисунку 2.4.

Рисунок 2.4. Мережа станцій ZAKPOS [53]

TNT GNSS Network – мережа базових станцій, що діє по всій території України, з обчислювальним центром в м. Дніпро [52]. На даний час мережа постійно діючих базових станцій TNT TPI GNSS Network налічує 83 станції. До цієї кількості входить 51 базова станція компанії TNT-TPI та 32 станції партнерів мережі. Розташування станцій зображено на рисунку 2.5.

Рисунок 2.5. Мережа станцій TNT-TPI [52]

Отримати інформацію про стан мережі, скачувати RINEX файли спостережень базових станцій мережі та іншу корисну інформацію користувач може через звичайний web-браузер. Для того, щоб виконувати роботи в режимі RTK, надається доступ до інформації у форматі RTCM по протоколу NTRIP.

System Solutions. Ця мережа налічує близько 120 станцій. Покриття мережі – 90% території України [50]. Мережа станцій показана на рисунку 2.6.

Рисунок 2.6. Мережа станцій System-Solutions [50]

Мережа System Solutions надає такі послуги: позиціювання в режимі реального часу (RTK) та AgroRTK – це послуга корегуючого сигналу RTK в процесі виконання агротехнічних робіт. Завдяки мережі станцій сервер передає RTK поправки на приймач трактора, що дозволяє досягти точність 2 см в будьякій точці України.

Крім станцій, розташованих на території України, було залучено ряд закордонних станцій, а саме Румунії (BAIA, BUCU), Польщі (BYDG, JOZ2, LAMA, USDL), Австрії (GRAZ), Молдови (IGEO), Італії (MATE), Росії (MDVJ, ZECK), Німеччини (POTS, WTZR), Латвії (RIGA), Болгарії (SOFI), Литви (VLNS).

Розглянемо детальніше мережі активних референцних станцій близького зарубіжжя, до яких входять залучені нами станції.

ASG-EUPOS – це мережа активних референцних станцій Польщі [46]. Станції цієї мережі створені за вимогами EUPOS, а саме: рівномірний розподіл станцій, середні відстані між сусідніми станціями (70 км), асиміляція всіх існуючих станцій EPN і IGS. В основному станції розташовані на будівлях державних установ. Мережа розпочала свою діяльність з 2008 р. Вона складається із 94 референцних станцій, 11 із них є двофункційними GPS + ГЛОНАСС, а також із двох обчислювальних центрів, що розташовані у Варшаві та Катовіцах. Мережеве програмне забезпечення та обладнання на станціях від фірми Trimble.

ROMPOS – це мережа активних референцних станцій Румунії [49]. Румунська служба супутникового позиціонування – ROMPOS – є проектом Національного агентства по кадастру і землекористуванню. Він забезпечує точне позиціонування і систему координат на основі європейської ЕТRS89. Національні мережі GNSS-станцій ROMPOS покладаються на супутникові системи Глобальної системи навігації GNSS, в тому числі GPS, ГЛОНАСС і GALILEO (у майбутньому), які забезпечують додаткові дані для підвищення точності визначення положення та охоплюють всю територію, в цілому 74 постійних GNSS-станцій. Дані мережі доступні в будь-який час і для будь-якого місця в Румунії, отримати їх можна через Інтернет.

МОLDPOS – це мережа активних референцних станцій Молдови [48]. Ця мережа є національною системою позиціонування з надання поправок, що працює в режимі 24/7 і функціонуюча по всій країні. Мережа MOLDPOS функціонує на найсучаснішому обладнанні та програмному забезпеченні Leica Geosystems. Мережа забезпечує доступність, простоту отримання і надійність даних, якість яких відповідає світовим стандартам. Також ця мережа є відкритою мережею. До неї може приєднатися будь-який власник GPS приймача. Всі поправки передаються через інтернет-протокол NTRIP і TCP/IP.

GNSSnet.hu – це мережа активних референцних станцій Угорщини [47]. Зареєстрованим користувачам GNSS Service Centre надається 30 днів в Інтернеті, і вони отримують дані від опорних станцій. Вимірювання розраховується на основі базових станцій для віртуальних станцій. Формат даних вимірювань – RINEX. Активна густота мережі станцій дозволяє використовувати двочастотні GNSSприймачі.

SKPOS – словацька служба космічних спостережень [51]. Вона являє собою багатофункціональний інструмент для точного позиціонування об'єктів та явищ з використанням глобальних навігаційних супутникових систем спостережень (GNSS). Мережа SKPOS складається з мережі базових GNSS-станцій, що підключені через приватну віртуальну мережу в Національному Центрі обслуговування, розташованому в геодезичному картографічному інституті в Братиславі. Національний Центр обслуговування оснащений контрольним програмним забезпеченням, яке виконує управління спостереженнями супутникових вимірів від мережі постійних опорних станцій. Користувачі цієї мережі використовують дані в режимі реального часу.

Для обробки також було використано точні ефемериди та поправки до годинників, які є продуктами IGS.

2.3 Стратегія обробки спостережень для створення комбінованого розв'язку в програмі Gamit-Globk.

Дані спостережень на кожній станції записуються з інтервалом в 30 секунд у внутрішню пам'ять приймачів в 24 годинні файли. Ці файли даних автоматично щоденно завантажуються на ftp-сервер кафедри вищої геодезії та астрономії Національного університету «Львівська політехніка». Потім GNSS-дані оброблялись за допомогою програмного забезпечення Gamit-Globk [59], з використанням кінцевих продуктів IGS.

Рисунок 2.7. Структура робочої директорії в програмі Gamit-Globk

В Gamit-Globk орбіти були фіксовані шляхом вибору експерименту ВАЅЕLINE. Спостережувана була лінійна комбінація без іоносфери (LC_AUTCLN). Тропосферною функцією відображення було вибрано VMF1. Система відліку була реалізована за допомогою всіх доступних опорних станцій EPN/IGS (рис.2.8) з Польщі (BYDG, JOZ2, LAMA, USDL), Австрії (GRAZ), Молдови (IGEO), Італії (MATE), Росії (MDVJ, ZECK), Німеччини (POTS, WTZR), Латвії (RIGA), Болгарії (SOFI), Литви (VLNS) та України (CNIV, GLSV, MIKL, POLV, SULP, UZHL).

Рисунок 2.8. Мережа опорних GNSS-станцій

Сім параметрів перетворення Гельмерта для переходу до ITRF08 було обчислено методом мінімальних обмежень. Дотримуючись такої стратегії, можна виключити помилки в геометрії мережі, викликані деякими помилками на станціях (які використовуються для реалізації системи відліку), а також уникнути істотних змін у системі відліку [7].

Але не завжди опорні станції EPN/IGS є рівномірно розподіленими по всій території країни. Тому одним з кроків нашого дослідження було встановити необхідну кількість та конфігурацію опорних станцій і мінімальний період часу для створення об'єднаного в часі регіонального розв'язку.

Для експерименту ми вибрали три різні конфігурації мережі опорних станцій, які представлені на рис.2.9:

Мережа №1

Мережа №2

Рисунок. 2.9. Схеми мереж опорних станцій

Мережу, представлену на рис. 2.8 і отриманий об'єднаний в часі розв'язок, що містив чотири GPS-тижні (1878, 1879, 1880, 1881), взяли як контрольний. Порівнюючи LPI розв'язки з різною тривалістю спостережень (1, 2, 4 тижні) з багаторічними розв'язками всієї європейської мережі [35], приведеними на епоху спостережень тижневих розв'язків LPI, можна зауважити, що утворені різниці координат та визначені їхні СКП не перевищують 4 мм (див. табл. 2.4).

Таблиця 2.4

Кількість	EUREF -LPI		
тижнів у комбінованому	СКП Х,	СКП Ү,	СКП Z,
розв'язку	ММ	ММ	ММ
1	2.6	1.8	3.7
2	2.6	1.8	3.6
4	2.6	1.7	3.3

СКП різниць координат EUREF та LPI розв'язків

Отже, вважаємо, що похибка отриманого контрольного об'єднаного в часі розв'язку складає 3.5 мм.

Далі отримали об'єднані в часі розв'язки різної тривалості (3 дня, 1, 2, 3, 4 тижні), в яких для реалізації системи відліку було взято мережі опорних станцій, представлених на рис. 2.8. Отримані результати порівняли з контрольним розв'язком і отримали середньоквадратичні похибки, наведені в табл. 2.5.

Таблиця 2.5

СКП різниць координат еталонної мережі та трьох мереж з різною конфігурацією опорних станцій

№ мережі	СКП Х, мм	СКП Ү, мм	СКП Z, мм
1	2	3	4
		3 дні	
1	1.5	2.1	3.0
2	1.6	2.0	2.7

1	2	3	4	
3	1.6	2.0	2.7	
	1 тиждень			
1	1.3	1.6	2.4	
2	1.1	1.3	1.7	
3	1.1	1.4	1.8	
		2 тижні		
1	1.0	1.5	2.6	
2	0.8	0.8	1.3	
3	0.8	0.9	1.4	
	3 тижні			
1	0.9	1.2	2.4	
2	0.5	0.3	0.5	
3	0.5	0.4	0.7	
	4 тижні			
1	0.7	1.0	2.1	
2	0.2	0.1	0.3	
3	0.3	0.2	0.4	

Можливості отримання об'єднаних в часі регіональних розв'язків, використовуючи невеликий часовий період спостережень: від трьох днів до чотирьох тижнів (місяць), є на сьогоднішній день малодослідженими. Дані розв'язки можна застосовувати як апріорні для національних мереж, де постійно появляються нові станції і є складність визначення положення станцій за довгий період.

Результати показали, що найкращою є конфігурація мереж №3, в якій при використанні невеликого числа станцій, найповніше охоплюється територія України. При цьому можемо сказати, що відстані між станціями не мають суттєвого впливу.

Дослідження різних конфігурацій мереж опорних станцій показало, що використовуючи значно менше їх число, ми не сильно втрачаємо в точності (до 0.5 мм якщо спостереження тривали 4 тижні), що актуально для регіональних мереж. Оскільки такі мережі мають велике число власних станцій, якщо брати велику кількість станцій IGS/EPN – можуть виникнути проблеми в опрацюванні, що обумовлено вищевказаними особливостями програмного пакету опрацювання.

Кінцевим результатом обробки є файл globk vel.org.

AkelPad - [d:\комбінований_розвязок\розділ_2\globk_vel (5).org]	- 0 ×
🗋 Файл Правка Вид Избранное Настройки Окно Плагины Справка	_ 8 ×
globk_vel (5) org	
Globk Analysis	
+ GLORG Version 5.19 +	
+++++++++++++++++++++++++++++++++++++++	
COMOPT: Line starting with VEL will be interpretted	
Stabilization with 20.0% constant, 80.0% site dependent weighting.	
Delete sites with 3.0-sigma condition.	
For Position: Min dH signa 0.005 m; Min RMS 0.0030 m, Min dNE signa 0.00050 m	
For Velocity: Min dH sigma 0.0050 m/yr; Min RMS 0.0030 m/yr, Min dNE sigma 0.00010 m/yr	
Sigma Ratio to allow use: Position 3.00 Velocity 3.00	
Starting Position stabilization iteration 1 ukr2.gdl For 32 sites in origin, min/max height signa 2.23 3700.12 mm; Median 2.31 mm. Tol 15.00 mm ukr2.gdl	
Removing POLV_CPS from orgin condition, height sigma 65.00 mm, Ratio Tol 3.000 ukr2.gdl	
Removing CNIV_2P5 from orgin condition, height sigma 83.47 mm, Ratio Tol 3.000 ukr2.gdl	
Removing Job-ars from orgin condition, height signa 3700.12 mm, Ratio Tol 3.000 ukr2.gdl	
Removing UZHL_3PS from orgin condition, height sigma 22.36 mm, Ratio Tol 3.000 ukr2.gdl	
Position system stabilization results	
X Rotation (mas) 496.04334 +- 0.32824 lter 1 ukr2.gdl Y Rotation (mas) 916.46698 +- 0.39696 lter 1 ukr2.gdl	
Z Rotation (mas) ********* +- 0.31935 Iter 1 ukr2.gdl	
X Translation (m) 0.03468 +- 0.01338 Iter 1 ukr2.gdl X Translation (m) 0.01328 +- 0.01338 Iter 1 ukr2.gdl	
Z Translation (m) 0.00575 + 0.01114 Her 1 ukr2.gdl	
Condition Sigmas used 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000	
ZECK_4PS 1.00 MDVJ_2PS 1.00 POL_2PS 1.00 MIKL_GPS 1.00 MIKL_2PS 1.00 CNIV_3PS 1.00	
GLSV_2P5 1.00 IGE0_GP5 1.00 BUCU_2P5 1.00 VLNS_GP5 1.00 RIGA_5P5 1.00 SULP_2P5 1.00	
BALA_ZYS 1.00 SUFL_ZYS 1.00 USUL_GYS 1.00 USUL_GYS 1.00 USUL_ZYS 1.00 USUL_ZYS 1.00 J0ZZ_ZYS 1.00 LAMA 3P5 1.00 BBYS 3P5 1.00 BBYS 4P5 1.00 BYG GPS 1.00 BYG GPS 1.00 MATE 3P5 1.00	
GRAZ_SPS 1.00 POTS_3PS 1.00 WTZR_2PS 1.00	
For 81 Position Iter 1 Pre RMS 2.7000 m; Post RMS 0.00196 m ukr2.gdl For 27 sites in origin, min/max PF signa 0.07 0.49 mm Median 0.11 mm Tol 1.50 mm ukr2.gdl	
Deleting MIKL_2PS Position error 0.0110 m, relative variance 1.35 Nsigma 3.15	
Deleting GLSV_2PS Position error 0.0076 m, relative variance 0.55 Nsigma 3.41	
	+
🗙 🔍 🖌 🔁 Учитывать регистр 🔲 Слово целиком 💟 Подсветить все	
9357:57, 7 Ins Unix 1251 (ANSI - кириллица)	.d

Рисунок. 2.10. Фрагмент файлу globk_vel.org

globk_vel.org – це файл, що містить інформацію про стабілізацію і часові ряди координат та швидкості координат, які наведено в Додатку Б.

2.4 Порівняння отриманих результатів

Коли було отримано об'єднаний в часі розв'язок (1721-1929 GPS-тижнів) з програмного забезпечення GAMIT-GLOBK, то на кількох станціях були виявлені

некоректні значення координат і швидкостей їх змін. Ми дослідили, що ці «погані» значення можуть бути спричинені декількома факторами. Серед них:

• у вихідному файлі не коректно зазначено тип антени приймача;

• окремі станції мають невеликий часовий інтервал спостережень. На рисунку 2.5 наведена діаграма інтервалу часу спостережень для проблемних станції протягом 4 років (1461 день) [92];

Рисунок 2.11. Часовий інтервал спостережень станції

• деякі станції мали некоректно вказані вхідні дані.

В подальшому такі станції були виключені з дослідження.

Наступним кроком нашої роботи було дослідження оптимального значення (max_chii) для нашої мережі. Команда Max_chii дозволяє автоматично видалити Н-файл, якщо дані з globk є «поганими». Команда Max_chii складається з трьох частин: max_chii <max chi**2 Increment> <max prefit difference> <max rotation>

1. <max chi**2 Increment> надає максимально допустиме значення χ^2 , коли новий h-файл додають в розв'язок.

2. <max prefit difference> встановлює максимальну різницю попередніх нев'язок для координат станції.

3. <max rotation> встановлює допуск для ротації координат станції.

Для цього дослідження було створено три розв'язки з різними значеннями max_chii (max_chii1=13 3 100; max_chii2=100 5 20000; max_chii3=20 10000 10000). З отриманих розв'язків було обчислено кількість врахованих днів з 4 років (1461

дні). Ми отримали такі результати: max_chii1=1164 дні, max_chii2=1177 дні, max_chii3=1044 дні та виконали порівняння координат з трьох розв'язків (табл.2.6).

Таблиця 2.6

	max_chii1-			max_chii1-			max_chii2-		
Стяниї	max_chii2			max_chii3			max_chii3		
Станци	ΔΧ,	ΔΥ,	$\Delta \mathbf{Z}$,	ΔΧ,	ΔΥ,	$\Delta \mathbf{Z}$,	$\Delta \mathbf{X}$,	ΔΥ,	ΔΖ,
	MM	MM	MM	MM	MM	MM	MM	MM	MM
1	2	3	4	5	6	7	8	9	10
ALUS	0	0	0	0	0	0	0	0	0
BALT	0	0	0	-1	0	0	0	0	0
BRSL	0	-1	0	-1	0	0	0	0	0
CHER	0	0	0	1	0	2	1	0	2
DNPR	0	0	0	0	0	1	0	0	0
GLPL	-1	0	0	-2	-1	-1	-1	-2	-1
HMEL	0	0	0	0	0	1	0	0	0
КАСН	0	0	0	1	-2	1	0	-1	1
КОСН	0	0	0	-1	0	0	0	0	0
KOVL	0	0	1	0	0	0	0	0	0
KRRS	-4	3	3	-4	3	3	0	0	0
KUCH	0	0	0	0	1	1	0	0	0
МҮКО	1	0	1	1	-1	-1	0	-1	-2
NKPL	-1	0	0	-2	0	0	-1	1	0
NVVL	0	1	0	3	-4	-2	4	-6	-1
ODSS	-3	-2	-4	-9	-6	-13	-6	-4	-8
PART	-2	-1	-1	-8	1	-2	-6	1	-1
PHM2	0	0	0	0	0	0	0	0	0
SAMB	1	0	0	-2	0	-3	-2	0	-3
SKOL	1	0	1	-2	-2	-3	-2	-1	-4

Різниці координат між різними значеннями max_chii

1	2	3	4	5	6	7	8	9	10
SKSV	9	4	11	13	6	16	4	2	5
SHEV	-1	0	0	-1	0	0	0	0	0
SUDA	0	0	0	0	0	0	0	0	0
SURE	-1	-2	0	-1	-1	0	0	0	1
TELE	0	0	0	0	0	1	0	0	0
VNRS	0	0	0	-1	1	0	0	0	0
ZHAS	0	1	0	0	1	0	0	0	0

Найкращий результат було отримано з max_chii2 (1177 з 1461 днів), оскільки при цьому значенні ми отримуємо необхідну нам точність (згідно вимог IGS) з включенням найбільшої кількості днів.

Як зазначалося вище, дані на ftp-сервер поступають з приватних GNSS-мереж, з яких найбільшими є ZAKPOS і TNT-TPI. Тому для нас було цікаво дослідити, якими є параметри переходу між цими мережами. Для цього ми обчислили різниці між спільними станціями для двох мереж.

Таблиця 2.7

Станції	ΔX , мм	$\Delta \mathbf{Y}$, мм	$\Delta \mathbf{Z}$, мм
1	2	3	4
BCRV_GPS	-4.6	2.3	0.5
CHTK_GPS	-5.0	2.3	-1.1
FRAN_GPS	-4.0	3.8	1.5
GLSV_2PS	-0.7	-0.6	-1.1
KHAR_2PS	0.1	0.6	0.5
KRRG_GPS	-6.1	3.7	1.4
KZLE_GPS	-6.3	1.5	-1.1
PLTV_GPS	-5.0	2.4	0.6
SULP_2PS	1.0	0.0	0.7
TETV_GPS	-6.1	1.7	-1.3

Різниці координат між різними GNSS-мережами (ZAKPOS i TNT-TPI)

1	2	3	4
UZHL_4PS	-0.2	-0.4	0.3
VRHV_GPS	-4.3	3.5	1.3
cep	-3.4	1.7	0.2

Середні значення різниць координат двох мереж становлять 3.4 мм для X, 1.7 мм для Y та 0.2 для Z.

Для дослідження точності та правильності нашого об'єднаного в часі розв'язку зі всіх мереж проводилося його порівняння з розв'язком EPN за спільними станціями. Основні опції, які використовувалися у двох пакетах представлено в табл. 2.8.

Таблиця 2.8

Опція	Програмне забезпечення			
	GAMIT-GLOBK	Bernese		
Вхідні дані	RINEX	RINEX		
Орбіти	Final IGS	Final IGS		
Моделі антени	IGS08_www.atx	IGS08_www.atx		
Океанічні припливи	FES2004	FES2004		
Моделі тропосфери	Saastamoinen	GPT		
Тропосферна функція	VMF1	GMF		
відображення				

Характеристики програмних пакетів GAMIT-GLOBK і Bernese

Обчислені різниці координат представлено на (рис.2.10). Розв'язки ЕРN були взяті з EPN_A_IGb08.SSC [35]. Координати були розраховані на ту ж епоху, як у нашому розв'язку.

Рисунок 2.12. Порівняння координат спільних станцій з розв'язків EPN та LPI В таблиці 2.9 наведено статистичні дані різниць.
73

СКП	$\Delta \mathbf{X}$	$\Delta \mathbf{Y}$	$\Delta \mathbf{Z}$
ММ	5.2	4.6	6.9

Статистичні дані різниць координат ЕРN та LPI розв'язків

СКП різниць координат, отримані в процесі національної обробки та з офіційного розв'язку EPN, відповідають вимогам IGS, оскільки не перевищували 1 см.

З кінцевої обробки GNSS-даних з референцних станцій України ми отримали швидкості координат станції по північній (N), східній (E) та висотній (H) компонентах. Щорічні швидкості руху станцій були визначені з часових рядів станції, в одиницях мм/рік. Для дослідження точності обчислених швидкостей координат їх аналогічно порівняли з розв'язками EPN по спільних станціях та визначали різниці швидкостей координат (рис.2.13).

Рисунок 2.13. Порівняння швидкостей координат спільних станцій з розв'язків ЕРN та LPI

В таблиці 2.10 наведено статистичні дані різниць швидкостей із двох розв'язків.

Таблиця 2.10

	ΔV_E	ΔV_N	ΔV_H		
	(мм/рік)	(мм/рік)	(мм/рік)		
max	0.6	0.6	2.2		
min	-1.1	-0.9	-2.2		
cep.	0.1	0.0	0.0		
СКП	0.4	0.4	1.0		

Статистичні дані різниць швидкостей EPN та LPI розв'язків

Стандартне відхилення між швидкостями координат, отриманими в процесі національної обробки та офіційним розв'язком IGS/EPN, не перевищує 0.4 мм по північній і східній компоненті (N і E) та 1 мм по висотній компоненті (H).

ВИСНОВКИ ДО РОЗДІЛУ 2

1. Розглянуто особливості використання програмного забезпечення «GAMIT/GLOBK» версії 10.6 в якості інструмента опрацювання спостережень для референцних GNSS-станцій згідно стандартів Європейської перманентної мережі та виконано опрацювання спостережень мережі активних референцних GNSS-станцій України за період 2013-2016 років, використовуючи рекомендовані IGS та EPN продукти і моделі. Отримано об'єднаний в часі загальний розв'язок.

2. Досліджено можливості отримання об'єднаних в часі регіональних розв'язків, використовуючи невеликий часовий період спостережень: від трьох днів до чотирьох тижнів (місяць), та різні конфігурації мереж опорних станцій. Виявлено, що використовуючи значно менше число станцій, ми не сильно втрачаємо в точності (до 0.5 мм якщо спостереження тривали 4 тижні), що актуально для регіональних мереж.

3. Експериментально встановлено оптимальне значення характеристики точності χ^2 (chi-квадрат) (max_chii2 = 100 5 20000), оскільки при цьому значенні ми отримуємо необхідну нам точність (згідно вимог IGS) з включенням найбільшої кількості днів (1177 з 1461 днів). В подальшому воно було використано в програмному забезпеченні GAMIT-GLOBK для визначення координат та їх змін в часі.

4. Виконано апробацію отриманого об'єднаного в часі розв'язку з програмного пакету GAMIT/GLOBK шляхом його порівняння з розв'язком EPN, який створено програмою Bernese. Середньоквадратичні похибки між розв'язками складають 4-7 мм для координат та 0.4 мм для швидкостей координат.

5 похибок Оскільки значення між GAMIT/GLOBK отриманим розв'язком та контрольним EPN розв'язком є в межах 4-7 мм, то можна вважати програмного оптимальним використання даного пакету для створення комбінованих розв'язків за стандартами IGS та EPN, які в подальшому будуть нами використовуватися для реалізації національної системи відліку, регіональних та місцевих геодинамічних досліджень.

РОЗДІЛ З

АПРОБАЦІЯ РОЗРОБЛЕНОЇ МЕТОДИКИ СТВОРЕННЯ НАЦІОНАЛЬНОЇ РЕФЕРЕНЦНОЇ СИСТЕМИ КООРДИНАТ ТА ГЕОДИНАМІЧНА ІНТЕРПРЕТАЦІЯ ОБ'ЄДНАНОГО В ЧАСІ РОЗВ'ЯЗКУ

3.1. Обчислення параметрів ротації частини Євразійської плити в межах території України на основі швидкостей координат вибраних референцних GNSS-станцій

Згідно розробленої методики, яка наведена в розділі 1.3., завершальним етапом створення національної системи відліку є трансформація з системи ITRF до ETRF за допомогою обчисленого вектора ротації плити на основі швидкостей координат вибраних GNSS-станцій.

На сьогоднішній день прийнятою формулою переходу від системи ITRF до ETRF є:

$$X^{E}(t_{c}) = X^{I}_{YY}(t_{c}) + T_{YY} + \begin{pmatrix} 0 & -R\dot{3}_{YY} & R\dot{2}_{YY} \\ R\dot{3}_{YY} & 0 & -R\dot{1}_{YY} \\ -R\dot{2}_{YY} & R\dot{1}_{YY} & 0 \end{pmatrix} \times X^{I}_{YY}(t_{c}) \bullet (t_{c} - 1989.0).$$
(3.1)

Ротаційні швидкості використовують для обчислення повороту Євразійської плити між двома епохами спостережень: *t_c* і 1989.0, коли система ETRS89 була зафіксована до Євразійської плити. Дані повороту Євразійської плити регулярно оновлюються і доповнюються.

Вектор трансформації обчислюють для знаходження різниці між ITRFyy та ITRF89. Цей вектор трансформації є лише обчислювальним ефектом між реалізаціями ITRS через різні станції, спостереження, методи, моделі та ін. Щоб звести до мінімуму відхилення ETRF-розв'язків, як альтернативу для обчислення трансформації, , застосовують статичну ротацію полюса Ейлера.

$$X^{E}(t_{c}) = X^{I}_{YY}(t_{c}) + R_{E14} \times X^{I}_{YY}(t_{c}) + \begin{pmatrix} 0 & -R\dot{3}_{YY} & R\dot{2}_{YY} \\ \dot{R}\dot{3}_{YY} & 0 & -R\dot{1}_{YY} \\ -R\dot{2}_{YY} & R\dot{1}_{YY} & 0 \end{pmatrix} \times X^{I}_{YY}(t_{c}) \bullet (t_{c} - 1989.0), (3.2)$$

$$\text{де } R_{E_{14}} \times X_{YY}^{I}(t_{c}) = \begin{pmatrix} 0 & -R3_{E_{14}} & R2_{E_{14}} \\ R3_{E_{14}} & 0 & -R1_{E_{14}} \\ -R2_{E_{14}} & R1_{E_{14}} & 0 \end{pmatrix} \times X_{YY}^{I}(t_{c}).$$

$$(3.3)$$

Полюсом Ейлера в концепції тектоніки літосферних плит називають точку на земні поверхні, через яку проходить радіус, який є віссю обертання плит літосфери (що розглядається як недеформуюче ціле) з постійною кутовою швидкістю.

Рисунок 3.1. До поняття про полюс Ейлера [120]

Якщо для ряду точок плити інструментальню визначені лінійні швидкості, то положення полюсу Ейлера і кутова швидкість можуть бути встановлені аналітично. Такими точками для нашого дослідження слугують референцні GNSS-станції.

Зв'язок швидкості зміщення референцної станції з координатами полюса Ейлера та її кутовою швидкістю обертання в геодезичних координатах можна представити виразами:

$$V_{B} = \Omega \cos(\Phi) \sin(L - \Lambda) , \qquad (3.4)$$

$$V_{\rm L} = \Omega(\sin(\Phi)\cos(B) - \cos(\Phi)\sin(B)\cos(L - \Lambda)), \qquad (3.5)$$

де Ω – кутова швидкість обертання плити;

Ф, Л-координати полюса обертання (Ейлера);

В, L – координати перманентної станції.

Нами за допомогою програмного пакету GAMIT-GLOBK було обчислено параметри ротації частини Євразійської плити в межах території України за допомогою вибраних GNSS-станцій: KHAR, MIKL, POLV, SULP, UZHL.

Програмний пакет GAMIT-GLOBK надає можливість виконати опрацювання плити або менш жорсткого блок з власного розв'язку, використовуючи команду «plate» програми glorg, а саме нами було застосовано:

plate eurasia khar mikl polv sulp uzhl

При наявності цієї команди, glorg обчислює вектор обертання (полюс Ейлера) блоку (сферичний пласт), який містить ці точки, в співвідношенні зі стабілізацією системи відліку. Вихідний ORG-файл містить компоненти і похибки обертання вектора, і замінює коригування швидкостей на значення, отримані при стабілізації із залишками, що відносяться до плити запропонованої для включення цієї точки.

Обчислені параметри ротації частини Євразійської плити в межах території України наведено в табл. 3.1.

Таблиця 3.1

Обчислені параметри ротації частини Євразійської плити в межах території

X 7	-	••
v	кп	ани
-	···Ρ	willin

<i>R</i> 1 _{<i>E</i>14} , ^о /млн.р	<i>R</i> 2 _{<i>E</i>14} °/млн.р	<i>R</i> 3 _{<i>E</i>14} ,°/млн.р
-0.054270±0.013	-0.191133±0.021	0.120273±0.006

Ці параметри ротації частини Євразійської плити в межах території України ми прийняли як рух плити замість вектору моделі NUVEL-1a-NNR, яка є еталонною для реалізації ITRF, та обчислили об'єднаний в часі розв'язок (координати та швидкості координат) для всіх станцій мережі України. Отриману систему відліку нами було названо IGukr08 і в повному вигляді наведено в додатку В. Результати, які ми отримали по суті є розв'язком рівняння (3.3).

Для перетворення отриманих координат IGukr08 до системи ETRS89 та її реалізації ETRF2000 було вибрано 28 станцій, які входять в мережу IGS/EPN та українські референцні станції з найдовшим періодом спостережень, і обчислено їх середні швидкості руху, які представлено в таблиці 3.2.

Таблиця 3.2

Станція	V _X , (мм/рік)	V _Y , (мм/рік)	V _Z , (мм/рік)
1	2	3	4
BAIA	-7.1	8.5	2.6
BBYS	-7.8	8.4	1.5
BBYS	-7.9	8.4	1.5
BUCU	-5.8	9.8	2.9
BYDG	-6.2	7.1	2.6
CNIV	-7.5	7.4	4.1
GLSV	-7.8	7.3	1.6

Швидкості координат референцних станцій в системі IGukr08

1	2	3	4
GRAZ	-6.0	10.4	4.3
HMEL	-2.3	9.0	8.3
IGEO	-7.5	7.8	2.9
JOZ2	-6.3	7.3	2.1
KHAR	-5.4	7.3	0.7
LAMA	-7.0	6.9	1.7
MATE	-6.5	11.5	8.9
MDVJ	-10.4	4.5	-0.1
MIKL	-8.3	7.7	2.8
MUKA	-7.2	8.6	2.2
PHM2	-6.8	5.5	6.1
POLV	-9.5	5.1	1.0
POTS	-3.2	7.2	4.1
RIGA	-6.6	7.1	0.7
SOFI	-6.1	10.8	2.0
SULP	-6.8	7.5	2.9
TREB	-6.6	9.2	3.6
USDL	-6.8	7.6	2.4
UZHL	-6.1	8.5	3.5
VNRS	-10.1	2.6	1.1
WTZR	-4.1	9.2	4.0
ZECK	-10.6	6.7	3.1
cep.	-6.9	7.8	2.9

Отримані середні швидкості координат $V_{xc} = -6.9_{(MM/pik)}, V_{yc} = 7.8_{(MM/pik)}, V_{zc} = 2.9_{(MM/pik)}$ ми прийняли як ротаційні швидкості \hat{R}_{1yy} , \hat{R}_{2yy} , \hat{R}_{3yy} з (3.1) для переходу до системи ETRF2000 на епоху 2015.00 для всієї території України. Фрагмент обчисленого об'єднаного в часі розв'язку наведено в таблиці 3.3. та

отримані середні швидкості для переходу між різними реалізаціями ETRS89 наведено в таблиці 3.4.

Таблиця 3.3

Станція	Х, м	Ү,м	Ζ,м		
1	2	3	4		
BAIA	3945840.1241	1720428.0483	4691082.4967		
BBYS	3980359.1405	1382291.8689	4772771.7458		
BBYS	3980359.1457	1382291.8734	4772771.7513		
BYDG	3647217.2030	1184604.0895	5079624.9667		
BYDG	3647217.2026	1184604.0816	5079624.9509		
CNIV	3397785.6067	2066990.3526	4969811.3948		
CNIV	3397785.5575	2066990.3285	4969811.3353		
GRAZ	4194424.1107	1162702.4685	4647245.1897		
IGEO	3814975.6389	2101074.9500	4644143.7698		
JOZ2	3664880.9070	1409190.3878	5009618.2712		
KHAR	3312984.7325	2428203.2584	4863307.6417		
LAMA	3524523.2523	1329693.4290	5129846.1505		
MATE	4641949.8282	1393045.1719	4133287.2711		
MDVJ	2845456.4588	2160954.0799	5265993.0451		
MIKL	3698554.3530	2308675.7738	4639769.3192		
MIKL	3698554.3671	2308675.7973	4639769.2857		
POLV	3411557.7204	2348463.7687	4834396.6764		
POLV	3411557.7401	2348463.7631	4834396.7072		
POTS	3800689.9419	882077.1698	5028791.1134		

Координати референцних станцій в системі ETRF2000_UKR

Таблиця 3.4

Середні швидкості координат між реалізаціями ETRS89 для території

України

V _х , (мм/рік)	V _Y , (мм/рік)	V_{Z} , <i>(мм/рік)</i>
1.4	-2.0	5.4

Для дослідження точності обчислених координат їх порівняли з розв'язками EPN по спільних станціях та визначили різниці координат.

Таблиця 3.5

Станція	ΔХ, мм	ΔΥ, мм	ΔΖ, мм
1	2	3	4
BAIA	-2.4	4.8	-7.8
BBYS	5.5	0.4	-7.2
BBYS	2.7	6.9	0.3
BYDG	-1.0	1.0	-14.3
BYDG	8.1	-4.9	-15.6
CNIV	6.7	-2.4	-13.2
CNIV	-4.5	1.5	-11.7
GRAZ	-5.3	7.0	-9.3
IGEO	-17.1	0.5	-17.7
JOZ2	-1.0	4.8	-8.3
KHAR	-4.1	-31.7	11.2
LAMA	-2.7	3.5	-9.5
MATE	-3.8	5.9	7.6
MDVJ	-6.7	-3.1	-13.9
MIKL	-16.0	-33.7	10.2
MIKL	1.1	-0.2	-11.3
POLV	-10.1	-4.8	-21.6
POLV	-0.4	-23.4	-1.8
POTS	6.4	1.8	-5.6
RIGA	-0.4	2.9	-11.9
SOFI	3.7	7.8	-2.8
SULP	-0.4	2.7	-7.6
SULP	-11.3	-32.6	14.3

Значення різниць EPN- LPI розв'язків

1	2	3	4
USDL	-2.0	0.8	-13.1
USDL	6.6	-3.7	-14.4
UZHL	5.6	-5.5	-18.3
UZHL	-3.0	0.2	-9.8
VLNS	-6.1	0.2	-13.5
WTZR	-1.7	5.8	-11.6
Cep.	-1.8	-3.0	-7.9

Відхилення між координатами, отриманими в процесі національної обробки, та офіційним розв'язком IGS/EPN не перевищує - 2 мм по X, -3 мм по Y та -8 мм по Z.

Перед тим як вибрати саме таку конфігурацію GNSS-станцій для обчислення параметрів ротації частини Євразійської плити в межах території України, як на рисунку 3.6, ми також провели дослідження з іншими наборами референцних GNSS-станцій України і близького зарубіжжя (див. табл. *3.6*).

Таблиця 3.6

Конфігурації GNSS-станцій для обчислення параметрів полюсу Ейлера

Конфігурація	GNSS-станції
Nº1	BAIA, POLV, MIKL, CNIV, IGEO, SULP, USDL, UZHL.
Nº2	KHAR, POLV, MIKL, CNIV, SULP, USDL, UZHL
№3	POLV, MIKL, CNIV, GLSV, SULP, UZHL.

Для вибраних конфігурацій ми обчислили параметри ротації частини Євразійської плити в межах розташування вибраних станцій. В подальшому, згідно розробленої методики, ми обчислили координати референцних станцій в системі ETRF2000 для кожної конфігурації. Для дослідження точності обчислених координат з різних конфігурацій, їх порівняли з розв'язками EPN по спільних станціях та визначили різниці координат (табл. 3.7).

Таблиця 3.7

Значення різниць координат EPN- LPI розв'язків

Столија	ΔΧ,	ΔΥ,	ΔZ,	ΔΧ,	ΔΥ,	ΔZ,	ΔΧ,	ΔΥ,	ΔZ,
Станція	ММ	ММ	ММ	ММ	ММ	ММ	MM	MM	MM
1	2	3	4	5	6	7	8	9	10
	Конф	рігураці	я №1	Конф	рігураці	я №2	Конф	ігурац	ія №3
BAIA_2PS	414	-244	-267	0	-1	2	0	-1	2
BBYS_3PS	-65	38	51	-17	21	21	15	23	-4
BBYS_4PS	-10	8	18	0	5	12	7	5	6
BYDG_2PS	-28	14	14	-10	7	2	3	8	-7
BYDG_GPS	-77	42	49	-23	23	15	13	25	-13
CNIV_2PS	449	-220	-224	144	-115	-59	3	1	10
CNIV_3PS	445	-219	-230	140	-115	-65	-1	2	3
GRAZ_5PS	-7	0	-1	-7	0	-1	-7	0	-1
IGEO_GPS	413	-233	-260	-11	-5	-8	-11	-5	-8
JOZ2_2PS	2	0	2	2	0	2	2	0	2
LAMA_3PS	0	0	1	0	0	1	0	0	1
MATE_3PS	-6	-4	14	-6	-4	14	-6	-4	14
MDVJ_2PS	1	-1	1	1	-1	1	1	-1	1
MIKL_2PS	-2	1	1	-2	1	1	-48	-138	101
MIKL_GPS	437	-230	-234	150	-130	-55	3	0	4
POLV_2PS	445	-211	-226	147	-109	-65	-5	-5	-8
POLV_GPS	6	-3	3	6	-3	3	-43	-120	94
POTS_3PS	5	-4	4	5	-4	4	5	-4	4
RIGA_5PS	3	2	1	3	2	1	3	2	1
SOFI_2PS	4	1	6	4	1	6	4	1	6
SULP_2PS	433	-233	-252	137	-129	-59	2	-2	3
SULP_GPS	0	0	3	0	0	3	-62	-137	97
USDL_2PS	404	-227	-242	129	-129	-54	4	6	-7

1	2	3	4	5	6	7	8	9	10
USDL_GPS	347	-199	-221	106	-114	-55	5	22	-26
UZHL_3PS	321	-193	-210	95	-113	-47	13	28	-19
UZHL_4PS	372	-222	-238	110	-129	-53	3	11	-6
UZHL_GPS	-96	43	39	-34	21	0	-59	-123	67
WTZR_2PS	-4	-1	-3	-4	-1	-3	-4	-1	-3
ZECK_4PS	4	-1	8	4	-1	8	4	-1	8

З наведеної таблиці, ми можемо зробити висновок, що жодна з представлених конфігурацій не задовольняє нашим вимогам, оскільки різниці координат надто великі (до 45 см для конфігурації №1, 15 см для конфігурації №2 та 14 см для конфігурації №3). Основною причиною таких великих різниць на нашу думку є те, що деякі станції, а саме KHAR і GLSV, не входять до класу А. Якщо станція мала якісь проблеми за цей період спостережень, то спотворюється вся мережа.

3.2 Огляд рухів земної кори для основних тектонічних структур

Наша планета є космічним тілом, що має форму геоїда з поверхнею близько 510 млн. *км*². Земля складається з трьох основних геосфер: земної кори, мантії і ядра, в складі кожної з яких можна виділити ряд шарів [122] (див. рис. 3.3).

Рисунок 3.3. Схема геосфер Землі [30]

Ядро Землі має радіус 3486 км. За своїм складом ядро прийнято вважати залізним з невеликим домішком нікелю та інших елементів. Мантія Землі по верхній межі проходить на глибині від 1-3 км під океанами і до 45-75 км під континентами, а по нижній межі – на глибині близько 2900 км. Товщина земної кори складає 70-75 км під гірськими спорудами і до 7 км в океанах і 33 км на континентах. Земна кора характеризується горизонтальною і вертикальною неоднорідністю. Виділяють два основних типи земної кори: континентальна й океанічна, яким відповідають такі структурні елементи як континенти й океани. Найбільшими тектонічними структурами континентів є давні платформи і рухомі пояси.

Платформа – це велика та відносно стійка частина земної кори. За геологічним віком платформи поділяють на давні і молоді. Давні платформи (докембрійські) утворилися в архейську і протерозойську ери. Їх вік складає 1.5– 4 млрд. років. Молоді платформи утворилися тільки 0.5 млрд. років тому.

Рисунок 3.4. Схема розташування основних платформ [123]

Основними давніми платформами є Східноєвропейська, Індостанська, Сибірська, Африканська, Китайсько-Корейська, Південнокитайська, Аравійська, Австралійська, Антарктична, Північноамериканська, Південноамериканська. Рухомий пояс – це лінійно витягнута ділянка земної кори з інтенсивними тектонічними рухами, магматизмом і метаморфізмом. Найбільшими рухомими поясами є Урало-Монгольський, Тихоокеанський, Середземноморський, Атлантичний та Арктичний.

Згідно з геофізичними вимірами, що проводилися протягом тривалого періоду часу, практично вся поверхня Землі знаходиться в безперервному русі. Проте швидкість таких рухів невелика і лише їх накопичення протягом тривалого геологічного часу (десятки — сотні млн. років) приводить до великих сумарних переміщень окремих ділянок земної кори [141].

Існує велика кількість класифікацій тектонічних рухів:

- за Г.К. Гілбертом і Г. Штілле: епейрогенічні і орогенічні;

- за М.М. Тетяєвим і В.В. Білоусовим: коливальні, складчасті і розривні;

- за В.Ю. Хаїним: поверхневі або верхньокорові, корові або загальнокорові, глибинні й надглибинні або верхньо- і загально мантійні.

Але для практичних цілей нашого дослідження доцільно обмежитися кінематичною класифікацією і виділяти тільки вертикальні й горизонтальні рухи. Масштаби цих рухів представлено на рисунку 3.5.

Рисунок 3.5. Масштаби рухів земної кори

На сьогоднішній день існують різноманітні методи спостережень за рухами земної кори, зокрема, геофізичні, геологічні і геодезичні (рис.3.6).

Рисунок 3.6. Методи спостережень за рухами земної кори

Перші два методи корисні для вивчення руху протягом тривалого часу (десятки, сотні мільйонів років), оскільки вони використовують в якості вхідних даних інформацію, зібрану протягом значного часового інтервалу. Що, по суті, є недоліком використання геологічних і геофізичних методів для вивчення сучасних рухів тектонічних плит.

Геодезичний метод став доступним в перших десятиліттях XX сторіччя. Ще до недавнього часу (~10-20 років назад) вертикальні рухи земної кори визначали геодезичним методом повторного нівелювання, а горизонтальні рухи – методом повторних тріангуляцій. При цьому швидкість горизонтальних рухів, визначена геодезичними методами, складає 0.1-5 см/рік. За геофізичними спостереженнями впродовж мільйонів років швидкість горизонтальних рухів і їх напрям залишаються майже постійними. Вертикальні рухи мають, навпаки, змінний характер. Повторні нівелювання показують, що швидкість опускання або піднімання на рівнинній місцевості зазвичай не перевищує 0.5 см/рік, а в гірських областях досягає 2 см/рік. В той же час середні вертикальні швидкості, визначені для великих інтервалів часу (за десятки мільйонів років) геофізичними і геологічними методами не перевищують 0.1 см/рік в рухомих поясах і 0.01 см/рік на платформах. Сьогодні спостерігається постійний зростаючий інтерес щодо використання GNSS для моніторингу руху земної кори (горизонтальних і частково вертикальних рухів). Імовірну зміну координат GNSS-станцій, яку можна отримати при безперервних спостереженнях протягом певного періоду часу, приймають за реальний рух тієї частини земної кори, на якій ці станції розташовані. Багато експертів у всьому світі [79, 75, 66, 91, 23] намагаються заздалегідь виявляти стихійні лиха, використовуючи GNSS-технології. Тому регіональні та локальні мережі GNSS-станцій є елементами, що представляють великий інтерес для вивчення регіональних рухів земної кори та сейсмічної активності, в тому числі і для України.

Територія України має складну тектонічну будову, яка була сформована протягом тривалого геологічного часу. Переважна частина території України належить до Східноєвропейської платформи та Середземноморського рухомого поясу.

Таблиця 3.8

	Український щит			
	Воронезький кристалічний масив			
Схілноєвропейська	Галицько-Волинська (Львівська) западина			
платформа	Волино-Подільська плита			
	Дніпровсько-Донецька западина			
	Причорноморська западина			
	Донецька складчаста споруда			
	Скіфська платформа			
Західноєвропейська платформа				
Серелземноморський	Карпатська складчаста система			
(альпійський)	Складчасто-брилова споруда Гірського			
склалчастий пояс	Криму			
	Чорноморська западина			

Основні тектонічні структури України

Межі тектонічних структур відображено на рисунку 3.7.

Рисунок 3.7. Схема меж тектонічних структур України [124]

Найбільшою тектонічною структурою на території України є давня Східноєвропейська платформа, яка простягається від Скандинавських гір до Уралу і від Баренцевого до Чорного та Каспійського морів. Найбільшими виступами фундаменту Східноєвропейської платформи є Український щит, який простягається з північного заходу на південний схід. Український щит представляє собою багатоярусну складчасту споруду, яка розчленована глибинними і регіональними розломами на великі блоки, які зміщені по вертикалі на різні глибини.

На західному схилі щита лежить Волино-Подільська плита. У західній частині Східноєвропейської платформи плита переходить у Галицько-Волинську (Львівську) западину. На півдні платформи простягається Причорноморська западина.

Уздовж північно-східного кордону України простягається Воронезький кристалічний масив. Між Воронезьким масивом і Українським щитом

знаходиться Дніпровсько-Донецька западина, яка є одною з найглибших западин Східноєвропейської платформи. На сході України вона переходить в Донецьку складчасту споруду.

Крім Східноєвропейської давньої платформи в межах України заходиться ще частина Західноєвропейської платформи та Скіфська платформа.

Основними тектонічними структурами Середземноморського поясу є Карпатська складчаста система, складчасто-брилова споруда Гірського Криму та Чорноморська западина.

Карпатська складчаста система входить до Альпійської складчастої області та простягається в південно-західній частині країни. На південному заході вона межує з Закарпатською западиною.

Гірський Крим, як і Карпатська складчаста система, входить до Альпійської складчастої області Середземноморського поясу.

Чорноморська глибоководна западина – це велика депресійна тектонічна структура, північна частина якої розташована на території України. Внутрішня частина Чорноморської западини має двоярусну будову: перший ярус – це потужний осадовий шар, а другий – базальтовий шар. Тобто кора внутрішньої частини Чорноморської западини може класифікуватись як субокеанічна, оскільки в неї відсутній «гранітний» шар. Процеси опускання дна западини та заповнення її теригенними осадками продовжуються і зараз [115].

3.3 Отримані результати та їх інтерпретація для основних тектонічних структур України.

Оскільки більшість українських GNSS-станцій, доступних для опрацювання, розташовані на трьох тектонічних структурах: Карпатській складчастій області, Волино-Подільській плиті та Українському щиту, це дало можливість виконати статистичний аналіз отриманих швидкостей координат. Значення швидкостей координат референцних станцій України для трьох основних тектонічних структур наведено у таблиці 3.9.

Статистичні результати швидкостей координат для трьох основних тектонічних

Значення	V _E	V_N	V_H			
	(мм/рік) (мм/рік)		(мм/рік)			
	Карпатська складчаста область					
Мак.	23.1	14.6	2.8			
Cep.	22.0	13.8	0.3			
СКП	0.6	0.7	1.7			
	Волино-подільська плита					
Мак.	23.9	14.7	4.0			
Cep.	22.2	13.7	1.8			
СКП	1.2	0.8	1.7			
	Український щит					
Мак.	25.3	14.9	3.6			
Cep.	23.0	12.9	0.5			
СКП	1.1	0.9	1.6			

структурах України

Різниця між середніми значеннями швидкостей координат для трьох основних тектонічних структур становить від 1 до 1.5 мм.

Для аналізу виявлених рухів на території України та оцінки швидкостей окремих тектонічних структур, було нанесено на векторизовану тектонічну карту масштабу 1:500000 обчислені з об'єднаного в часі розв'язку вектори горизонтальних швидкостей координат, та створено базу даних обчислених довжин і азимутів векторів, визначених за даними вимірювань на всіх GNSSстанціях. В подальшому, із збільшенням кількості референцних станцій на території України, дані створеної бази також будуть доповнюватися. Фрагмент карти з наведеними горизонтальними векторами швидкостей представлено на рисунку 3.8. Компоненти руху всіх станцій відображають однорідний характер. Вектори швидкостей координат є у напрямі до Воронезького кристалічного масиву. Ці тренди векторів є в кореляції з геологічними та геофізичними матеріалами досліджуваної області [139].

Рисунок 3.8. Фрагмент електронної тектонічної карти з векторами горизонтальної складової швидкостей координат референцних станцій України

Вертикальна складова швидкостей координат станцій, обчислена в програмному забезпеченні GAMIT/GLOBK, була порівняна з даними геометричного нівелювання [137,138], які були відомі для чотирьох станцій: STRY, KIRV, VNRS та SHPT (табл. 3.10), та модельними даними вертикальних рухів, отриманими геолого-геофізичними методами (див. рис.3.9 і 3.10) і представленими у табл. 3.11.

Таблиця 3.10

Вертикальні швидкості координат окремих референцних станцій України та дані геометричного нівелювання

Пункт	Gamit-Globk	Геометричне нівелювання		
	V _{Н(мм/рік)}	V _{Н(мм/рік)}		
1	2	3		
STRY (м.Стрий)	+2.8	+2.2		

1	2	3
KIRV (м. Кропивницький)	+0.0	+1.0
VNRS (м. Вінниця)	+3.2	+3.5
SHPT (м.Шепетівка)	+2.9	+3.5

Як видно із таблиці 3.10, значення вертикальних швидкостей обчислених в програмному пакеті GAMIT/GLOBK (GNSS-результати) та з геометричного нівелювання є досить близькими. Звичайно, з збільшенням часового інтервалу GNSS-спостережень, точність визначення вертикальних швидкостей також буде зростати.

Рисунок 3.9. Модель сучасних вертикальних тектонічних рухів земної кори для території України [117]

Рисунок 3.10. Райони прояву сучасних вертикальних тектонічних рухів земної кори для території України [117]

Таблиця 3.11

Вертикальні швидкості координат референцних станцій України та модельні

Станція	Назва міста	Gamit- Globk	Модельні значення
		V_{H} , (мм/рік)	V_{H} , (мм/рік)
1	2	3	4
CNIV_3PS	м. Чернігів	1.6	-4
CRNI_GPS	м. Чернівці	0.9	0
DNCK_GPS	м. Донецьк	-1.4	0
DNPR_GPS	м. Дніпро	1.2	0
FRAN_GPS	м. Івано-Франківськ	1.3	0

значення вертикальних рухів земної кори

1	2	3	4
GLSV_2PS	м. Київ	-0.7	-4
HMEL_GPS	м. Хмельницький	7.6	-1
KHAR_GPS	м. Харків	0.5	-3
MIKL_GPS	м. Миколаїв	-0.0	-2
ODRS_GPS	м. Одеса	2.0	-3
POLV_GPS	м. Полтава	-2.4	-1
RIVN_GPS	м. Рівне	0.7	-1
SIMF_GPS	м. Сімферополь	-1.1	0
SULP_GPS	м. Львів	0.1	-2
TERN_GPS	м. Тернопіль	-2.0	-2
UZHL_GPS	м. Ужгород	1.0	+2
ZPRG_GPS	м. Запоріжжя	-1.7	-2

З таблиці 3.11 помітно, що не для всіх станцій обчислені вертикальні швидкості координат відповідають модельним уявленням про вертикальні рухи земної кори із геолого-геофізичних даних.

За результатами проведеного аналізу горизонтальних і вертикальних швидкостей координат станцій на території Україні можна зробити наступні висновки:

1) горизонтальні швидкості координат референцних GNSS-станцій в переважній більшості відповідають геологічним та геофізичним даним щодо проявів тектонічних рухів досліджуваної території;

2) вертикальні швидкості координат не завжди відповідають існуючим даним щодо вертикальних тектонічних рухів, а для їх нової геодинамічної інтерпретації потрібно збільшення часового інтервалу GNSS-спостережень;

3) числові характеристики проявів геодинамічних рухів регіонального масштабу безпосередньо залежать від густоти розміщення референцних GNSSстанцій і тривалості спостережень. 4) взаємне послідовне поєднання швидкостей змін координат референцних GNSS-станцій з геолого-геофізичними даними дозволить створити регіональну геодинамічну модель території України.

ВИСНОВКИ ДО РОЗДІЛУ З

1. Обчислено параметри ротації частини Євразійської плити в межах території вибраними GNSS-станціями. Ці параметри ротації України за частини Євразійської плити в межах території України ми прийняли як рух плити замість вектору моделі NUVEL-1a-NNR, яка є еталонною для реалізації ITRF, для об'єднаного підвищення точності обчислення В часі розв'язку мережі референцних GNSS-станцій України.

2. Реалізовано розроблену методику створення української національної системи відліку та наведено ряди координат в національній системі відліку ETRF2000_UKR.

3. Проведено геодинамічний аналіз обчисленого об'єднаного в часі розв'язку стосовно основних тектонічних структур на території України. Різниця між середніми значеннями швидкостей координат між трьома основними тектонічними структурами (Карпатська складчаста область, Волино-Подільська плита та Український щит) по східній компоненті (Е) становить 1 мм, північній компоненті (N) – 0.9 мм, а по висотній (H) – 1.5 мм.

4. Нанесено на векторизовану тектонічну карту масштабу 1:500000 обчислені з об'єднаного в часі розв'язку вектори горизонтальних швидкостей координат, які є в межах 22-25 мм/рік і мають напрям в сторону Воронезького кристалічного масиву. Горизонтальні швидкості координат референцних GNSS-станцій в переважній більшості відповідають геологічним та геофізичним даним щодо проявів тектонічних рухів досліджуваної території, вертикальні — потребують збільшення часового інтервалу спостережень для підвищення точності та їх нової геодинамічної інтерпретації.

ВИСНОВКИ

1. Виконано огляд систем відліку, які на сьогоднішній день застосовують в геодезії, а також організацію та роботу національних мереж референцних GNSSстанцій Європи, що дало можливість розглянути підходи до створення національної загальноєвропейської референцної системи ETRS89 та її реалізації ETRF2000 і запропоновувати власну методику згущення ETRF2000 до національних масштабів, особливістю якої є визначення параметрів ротації частини Євразійської плити в межах території України.

2. Досліджено можливості отримання об'єднаних в часі регіональних розв'язків, використовуючи невеликий часовий період спостережень: від трьох днів до чотирьох тижнів (місяць), та різні конфігурації мереж опорних станцій. Виявлено, що застосовуючи значно меншу кількість опорних станцій (актуально для регіональних мереж), точність понижується всього до 0.5 мм якщо використовувати спостереження тривалістю у 4 тижні.

3. Експериментально встановлено оптимальне значення характеристики точності χ^2 (chi-квадрат) (max_chii2 = 100 5 20000). Саме при такому значенні можна отримати необхідну точність розв'язку (згідно вимог IGS) з включенням найбільшої кількості днів (1177 з 1461 днів). В подальшому встановлене значення характеристики точності χ^2 було використано в програмному забезпеченні GAMIT-GLOBK для визначення координат та їх змін в часі.

4. Виконано опрацювання супутникових спостережень мережі активних peфepeнцних GNSS-станцій України за період 2013-2016 років, використовуючи рекомендовані IGS та EPN продукти і моделі, та обчислено об'єднаний в часі розв'язок.

5. Проведено апробацію отриманого об'єднаного в часі розв'язку з програмного пакету GAMIT/GLOBK шляхом його порівняння з розв'язком EPN, який створено програмою Bernese. Оскільки середньоквадратичні похибки між розв'язками складають 4-7 мм для координат та 0.4 мм для швидкостей координат, можна вважати оптимальним використання даного програмного пакету для створення об'єднаних в часі розв'язків за стандартами IGS та EPN, які в

подальшому можуть використовуватися для реалізації національної системи відліку, регіональних та місцевих геодинамічних досліджень.

6. Реалізовано розроблену методику створення української національної системи відліку та наведено ряди координат в національній системі відліку ETRF2000_UKR. Для цього було обчислено параметри ротації частини Євразійської плити в межах території України за вибраними GNSS-станціями. Визначені параметри ротації було прийнято за рух частини Євразійської плити, що дало можливість підвищення точності регіональних реалізацій ETRF, отриманих у різні епохи спостережень.

7. На основі отриманого об'єднаного в часі розв'язку розглянуто можливість інтерпретації швидкостей координат референцних станцій як геодинамічних параметрів стосовно основних тектонічних структур на території України. Різниця між середніми значеннями швидкостей координат між трьома основними тектонічними структурами (Карпатська складчаста область, Волино-Подільська плита та Український щит) по східній компоненті (Е) становить 1 мм, північній компоненті (N) – 0.9 мм, а по вертикальній (H) – 1.5 мм.

8. Нанесено на векторизовану тектонічну карту масштабу 1:500000 обчислені з об'єднаного в часі розв'язку вектори горизонтальних швидкостей координат, які є в межах 22-25 мм/рік і мають напрям в сторону Воронезького кристалічного масиву. Горизонтальні швидкості координат референцних GNSS-станцій в переважній більшості відповідають геологічним та геофізичним даним щодо проявів тектонічних рухів досліджуваної території, вертикальні — потребують збільшення часового інтервалу спостережень для підвищення точності та їх нової геодинамічної інтерпретації.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. GPS velocity field for the Tien Shan and surrounding regions [Електронний pecypc] / [A. V. Zubovich, X. Wang, Y. G. Scherba та iн.] – Режим доступу до pecypcy: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010TC002772

2. Altamimi Z. 2003, Discussion on How to Express a Regional GPS Solution in the ITRF [Електронний pecypc] / Z. Altamimi // Proceedings of the EUREF Symposium, Ponta Delgada, 5 June 2002, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am main – Режим доступу до ресурсу: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.474.7609

3. The Terrestrial Reference frame and the dynamic Earth / [Z. Altamimi,
D. Angermann, D. Argus, G. Blcwitt Ta in.] // EOS, Transactions, American Geophysical Union - Vol. 82, No25, June 19 – 2001 – P. 273-279

4. Altamimi Z. New trends for the realization of the International Terrestrial Reference System / Z. Altamimi, C. Boucher, P. Sillard // Advanced Space Research 30(2), 2002b - P. 175-184.

Altamimi Z., Dermanis A. The choice of reference system in ITRF formulation /
 Z. Altamimi, A. Dermanis // IAG Symposia, vol 137. Springer, Berlin - 2009 - P. 329–334.

6. Altamimi Z. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications / Z. Altamimi, P. Sillard, C. Boucher // J Geophys Res (Solid Earth) 107(10), 2002a - P. 1-19

7. Andersen P. H. Multi-level arc combination with stochastic parameters / P. H. Andersen //J. Geod., 74, 2000 – P. 531 – 551.

8.Araszkiewicz A. Combining of GNSS solutions from BERNESE and GAMITSoftware [Електронний ресурс] / A. Araszkiewicz, M. Figurski, K. Kroszczyński // –Режимдоступудоресурсу:http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-PWAB-0031-0013/

9. Araszkiewicz A. Centre of Applied Geomatics: scientific activities in the frame of EUREF Permanent Network / A. Araszkiewicz, J. Bogusz, M. Figurski, K. Szafranek // Reports on Geodesy, No. 2 (91) – 2011 - P. 75–80.

10. The RING network: improvements to a GPS velocity field in the central Mediterranean / [A. Avallone, G Selvaggi, E. D'Anastasio та ін.] // Ann. Geophys., 53(2) - Р. 39–54.

11. Bähr H. Variance Component Estimation for Combination of Terrestrial Reference Frames / H. Bähr, Z. Altamimi, B. Heck // Universitätsverlag Karlsruhe Schriftenreihe des Studiengangs Geodäsie und Geoinformatik, 6 ISBN: 978-3-86644-206-1, 2007 – 67 p.

Barbarella M. The new Italian geodetic reference network (RDN): a comparison of solutions using different software packages [Електронний ресурс] / M. Barbarella, S. Gandolfi, L. Ricucci, A. Zanutta //In: Proceedings of EUREF symposium, Florence, Italy, 27–30 May – Режим доступу до ресурсу: http://www.euref.eu/symposia/2009Florence/06-03-p-gandolfi.pdf

13. Biagi L. Densification of IGS/EPN by local permanent networks: sensitivity of results with respect to the adjustment choices [Електронний ресурс] / L. Biagi, S. Caldera, A.Capra, C. Castagnetti, F. Sansò // – Режим доступу до ресурсу: www.euref.eu/symposia/2008Brussels/10-02-Caldera.pdf

Blewitt G. Effect of annual signals on geodetic velocity [Електронний ресурс] / G. Blewitt, D. Lavall'ee // J. geophys. Res., 107(B7), doi:1.1029/2001JB000570 – 2002

–Режимдоступудоресурсу:https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JB000570

15. GPS for real-time earthquake source determination and tsunami warning systems
/ [G. Blewitt, W.C. Hammond, С. Kreemer та ін.] // J. Geodesy 83 (3–4) – 2009 - Р.
335–343.

16. Brockmann E. Combination of solutions for geodetic and geodynamic applications of the Global Positioning System (GPS) / E. Brockmann // Geodätisch Geophysikalische Arbeiten in der Schweiz, Schweizerische Geodätische Kommission, Vol. 55., 1996 – P. 210.

17. Boucher C. Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign [Електронний ресурс] / C. Boucher, Z. Altamimi // – Режим доступу до ресурсу: http://etrs89.ensg.ign.fr/memo-V8.pdf

Brockmann E. Geotectonics in the Swiss Alps using GPS / E. Brockmann, R.
Hug, D. Schneider, Th. Signer // EUREF Publication No. 12, Mitteilungen des
Bundesamtes fur Kartographie und Geodäsie Band 29 – 2003 - P. 109-117.

19. Bruyninx C. Guidelines for EUREF Densifications v. 5 [Електронний ресурс] /C. Bruyninx, Z. Altamimi, A. Caporali, A. Kenyeres, M. Lidberg, G. Stangl, J.A.Torres//—Режим доступу до ресурсу:http://www.epncb.oma.be/_documentation/guidelines/Guidelines_for_EUREF_Densifications.pdf

20.Belgian Report of activity in the frame of the International Association of
Geodesy [Електронний ресурс] / [C. Bruyninx, V. Dehant, P. Defraigne та iн.] //. –
Режим доступу до ресурсу: http://www.iag-
aig.org/attach/5015ba0f03bf732e1543f4120f15ec9a/belgium.pdf

21. Caldera S. GNSS permanent networks monitoring: problems and solution [Електронний pecypc] / S. Caldera // – Режим доступу до pecypcy: http://www.autec-geomatica.it/wp-content/uploads/2012/06/Caldera.pdf

22. Coulot D. Toward a direct combination of spacegeodetic techniques at the measurement level: Methodology and main issues / D. Coulot, P. Berio, R. Biancale, S. Loyer, L. Soudarin, A.-M. Gontier // J. Geophys. Res., 112, B05410, doi:10.1029/2006JB004336, 2007 – P. 1-21.

23. Chen Y. A Multi-antenna GPS System for Local Area Deformation Monitoring /
Y. Chen, X. Ding, D. Huang, J. Zhu // Earth Planets Space, 52 – 2000 - P. 873-876.

24. Dach R. Bernese GPS Software Version 5.2. / R. Dach, F. Andritsch, D. Arnold,
S. Bertone, P. Fridez //Astronomical Institute, University of Bern, Switzerland, 2015 –
P. 825

25. Davies P. Methodology for global geodetic time series estimation: A new tool for geodynamics / P. Davies, G. Blewitt // J. Geophys. Res., Vol. 105, No. B5 – 2000 - P. 11,083-11,100.

26. Dong D.-N. Estimating regional deformation from a combination of space and terrestrial geodetic data / D.-N. Dong, T. A. Herring, R. W. King // J. Geodesy, 72 - 1998 - P. 200–214.

27. Dong D. Anatomy of apparent seasonal variations from GPS-derived site position time series / D. Dong, P. Fang, Y. Bock, M. K. Cheng, S. Miyazaki // JGR Vol. 107, No. B4, ETG 9-1 - 2002.

28. Doskich S. Geodynamics and Troposphere research using the software GAMIT-GLOBK. / S. Doskich // Abstracts 23rd Young Scientists' Conference on Astronomy and Space Physics – 2016 - P. 34-35.

29. Dow J.M. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems / J.M. Dow, R. E. Neilan, C. Rizos // J. of Geodesy vol. 83 – 2009 - P. 191-198

30. EdEra Books [Електронний ресурс] – Режим доступу до ресурсу: https://geography.ed-era.com/3/vnutrishnya_budova_zemli.html

31. EUPOS Technical Standards [Електронний ресурс] – Режим доступу до pecypcy: http://www.eupos.org/sites/default/files/EUPOS%20TS-R23_2_0.pdf

32. EUREF Permanent Netmork [Електронний ресурс] – Режим доступу до pecypcy: http://www.epncb.oma.be/_organisation/projects/series_sp/

33. EUREF Permanent Network Densification [Електронний ресурс] – Режим доступу до ресурсу: http://www.epncb.oma.be/_densification/operationalcentres.php

34. EUREF Technical Working Group [Електронний ресурс] – Режим доступу до pecypcy: http://www.euref.eu/euref_twg.html

35. EUREF table with station positions (at epoch 2005.0) and velocities[Електронний pecypc]–Режим доступу до pecypcy:ftp://epncb.oma.be/epncb/station/coord/EPN/EPN_A_IGb08.SSC

36. EUREF2009: National report from Austria [Електронний ресурс] – Режим доступу до ресурсу: http://www.euref.eu/symposia/2009Florence/07-02-austria.pdf

37. EUREF2009: National report from Germany [Електронний ресурс] – Режим доступу до ресурсу: http://www.euref.eu/symposia/2009Florence/07-10-germany.pdf

38. EUREF2009: National report from Spain [Електронний ресурс] – Режимдоступу до ресурсу: http://www.euref.eu/symposia/2009Florence/07-23-spain.pdf

39. EUREF2009: National report from France [Електронний ресурс] – Режим доступу до ресурсу: http://www.euref.eu/symposia/2008Brussels/06-08-FRANCE%20-%20EUREF2008_National-report-France.pdf

40. EUREF: National report from Slovenia [Електронний ресурс] – Режим доступу до ресурсу: http://www.euref.eu/symposia/2014Vilnius/05-22-p-Slovenia.pdf

41. EUREF: National report from Portugal [Електронний ресурс] – Режим доступудоресурсу:http://ftp.igeo.pt/eventos/comunicacoes/Italia/EUREF2009-NR-PORTUGAL.pdf

42. EUREF: National report from Netherland [Електронний ресурс] – Режим доступу до ресурсу: https://www.ncgeo.nl/downloads/NationalReport2008.pdf

43. EUREF: National report from Hungary [Електронний ресурс] – Режим доступу до ресурсу: http://www.euref.eu/symposia/2013Budapest/06-13-Hungary_NationalReport2013.pdf

44. Fastellini G. Impact of Local GNSS Permanent Networks in the Study of Geodynamics in Central Italy / G. Fastellini, F. Radicioni, A. Stoppini // In: Sideris M.G. (eds) Observing our Changing Earth. International Association of Geodesy Symposia, vol 133. Springer, Berlin, Heidelberg - P. 549-555

45. Feigl K. L. Space geodetic measurement of crustal deformation in central and southern California, 1984-1992 [Електронний ресурс] / К. L. Feigl, D. C. Agnew, Y. Bock та ін. // J. Geophys. Res., 98, 21677-21712, 1993– Режим доступу до ресурсу: https://doi.org/10.1029/93JB02405

46. GNNS мережа ASG-EUPOS [Електронний ресурс] – Режим доступу до pecypcy: http://www.asgeupos.pl/

47. GNNS мережа GNSSnet.hu [Електронний ресурс] – Режим доступу до pecypcy: https://www.gnssnet.hu/

48. GNNS мережа MOLDPOS [Електронний ресурс] – Режим доступу до pecypcy: http://moldpos.md/

49. GNNS мережа ROMPOS [Електронний ресурс] – Режим доступу до ресурсу: http://gnss.rompos.ro/sbc

50. GNNS мережа України – System Solutions [Електронний ресурс] – Режим доступу до ресурсу: http://systemnet.com.ua/ua

51. GNNS мережа SKPOS [Електронний ресурс] – Режим доступу до ресурсу: http://skpos.gku.sk/en/

52. GNNS мережа України – ТNТ-ТРІ [Електронний ресурс] – Режим доступу до ресурсу: https://net.tnt-tpi.com/page

53. GNNS мережа України – ZAKPOS [Електронний ресурс] – Режим доступу до ресурсу: http://zakpos.zakgeo.com.ua

54. Gordon R.G. Global tectonics and space geodesy [Електронний ресурс] / R.G. Gordon, S. Stein // Science 256 (5055), 333–342. Режим доступу до ресурсу: http://dx.doi.org/10.1126/science.256.5055.333.

55. Gerstl M. DOGSCS Kombination und Lösung großer Gleichungssys teme /
M. Gerstl, R. Kelm, H. Müller, W. Ehrnsperger // Interner Bericht, DGFI, München, 2001.

56. Guideline for EUPOS Reference Frame Fixing [Електронний ресурс] – Режимдоступудоресурсу:

http://www.eupos.org/sites/default/files/u1/EUPOS%20G_RFF.pdf

57. Guidelines for the EPN Analysis Centres [Електронний ресурс] – Режимдоступудоресурсу:

http://www.epncb.oma.be/_documentation/guidelines/guidelines_analysis_centres.pdf

58. HELMERT F. R. Die Ausgleichsrechnung nach der Methode der kleinsten Quadrate./ F. R. HELMERT // Teubner, Leipzig, 1872–215 p.

59. Herring T.A. Introduction to GAMIT/GLOBK - Release 10.6. / T.A. Herring, R. W. King, M. A. Floyd, S. C. McClusky // Department of Earth, Atmospheric, and Planetary Science MIT, USA, 2016, 44 p.

60. Herring T.A. Reference Manual. GPS Analysis at MIT. Release 10.6. / T.A. Herring, R. W. King, M. A. Floyd, S. C. McClusky // Department of Earth, Atmospheric, and Planetary Science MIT, USA, 2016, 168 p.

61. Herring T.A. GLOBK Reference Manual. Global Kalman filter VLBI and GPS analysis program. Release 10.6. / T.A. Herring, R. W. King, M. A. Floyd, S. C. McClusky // Department of Earth, Atmospheric, and Planetary Science MIT, USA, 2016, 95 p.

62. Rotation Reference International Earth and Systems Service (IERS) pecypc] [Електронний Режим доступу до pecypcy: https://www.iers.org/IERS/EN/Home/home node.html

63. IGS (International GNSS Service) [Електронний ресурс] – Режим доступу до pecypcy: http://adsc.gfz-potsdam.de/tiga/index_TIGA.html

64. IGS Products [Електронний ресурс] – Режим доступу до ресурсу: http://www.igs.org/products

65. IGS Data Centers [Електронний ресурс] – Режим доступу до ресурсу: http://www.igs.org/about/data-centers

66. Kaloop M.R. Tower bridge movement analysis with GPS and accelerometer techniques: Case study yonghe tower bridge / M.R. Kaloop, H. Li //Inform. Technol. J., 8: 1213-1220 - 2009.

67. Kenyeres A. Categorization of permanent GNSS reference stations [Електронний ресурс] / A. Kenyeres // – Режим доступу до ресурсу: http://www.epncb.oma.be/_productsservices/coordinates/kenyeres_2010.pdf.

68. Kenyeres A. Maintenance of the EPN ETRS89 coordinates [Електронний
pecypc] / A. Kenyeres // EUREF TWG 2009 Spring Meeting, Feb. 26-27, 2009,
Budapest – Режим доступу до ресурсу:
http://www.euref.eu/TWG/EUREF%20TWG%20minutes/49-Budapest2009/03-

eETRSmaint_TWGrepBP.pdf

69. Kenyeres A. Homogeneous Reprocessing of the EUREF Permanent Network: First Experiences and Comparisons / A. Kenyeres, M. Figurski, J. Legrand, C. Bruyninx,P. Kaminski, H. Habrich // Bulletin of Geodesy and Geomatics, in press. (EUREF Symposium 2008 in Brussels Proceedings).

Kierulf H.P. A continuous velocity field for Norway / H.P. Kierulf, M. Ouassou,
M. Simpson, O. Vestøl // J. Geodesy 87 (4) – 2013 - P. 337–349.
71. Koch K. Bayesian Inference with Gedetic Aplications. /K. Koch // Springer, Berlin Heidelberg New York, 1990 – 245 p.

72. Koch K.-R. Parameter Estimation and Hypothesis Testing in Linear Models / K.-R Koch // Springer, Berlin Heidelberg New York. ISBN 3-540-18840-1., 1998 - 334p.

73. Kouba J.A. Guide to Using International GNSS Service (IGS) Products [Електронний ресурс] / Kouba J.A. // – Режим доступу до ресурсу: https://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf

74. Kreemer C. A geodetic plate motion and Global Strain Rate Model / C. Kreemer,
G. Blewitt, E.C. Klein // Geochemistry, Geophysics, Geosystems, 15, 3849-3889 – 2014.
75. Kutoglu H. S. Datum Issue in Deformation Monitoring using GPS / H. S.
Kutoglu // Proceedings of FIG Congress 2010 on Deformation Measurement using
GNSS Commission: 5 and 6, Sydney, Australia, April 11-16.

76. Legrand J. EPN Reference Frame Alignment: Consistency of the station positions/ J. Legrand, C. Bruyninx // Bulletin of Geodesy and Geomatics, LXVIII, No. 1, 2009, P. 19–34.

77. Legrand J. Reference frame definition in a regional GNSS network: Global orregional? [Електронний ресурс] / J. Legrand, C. Bruyninx // International GNSSService, Analysis Center Workshop 2008, 2-6 June 2008, Miami Beach, Florida, USA –Режимдоступудоресурсу:

 $http://www.ngs.noaa.gov/IGSWorkshop2008/docs/Legrand_Bruyninx.pdf$

78. Lichten S.M. 1995, GIPSY-OASIS II: A High precision GPS Data processing System and general orbit analysis tool / S.M. Lichten // Technology 2006, NASA Technology Transfer Conference, Chicago, Il., Oct., P. 24-26.

79. Lim M. C. GPS deformation monitoring and analysis for local cors network: Iskandarnet / M. C. Lim, H. Setan, R. Othman // Geoinformation Science Journal, Vol.
10, No. 2 – 2010 – P. 1-14

80. Malkin Z. Preliminary results of processing EPN network observations using a non-fiducial strategy / Z. Malkin, A. Voinov // Phys. Chem. Earth (A), Vol. 26 - P. 579-583.

81. Malkin Z. The first results of processing EUREF observations using non-fiducial strategy / Z. Malkin, A. Voinov // Труды ИПА РАН, вып. 6 – 2011 - С. 255-270.

Métois M. Insights on continental collisional processes from GPS data: Dynamics of the peri-Adriatic belts / M. Métois, N. D'Agostino, A. Avallone, N. Chamot-Rooke, A. Rabaute, L. Duni, N. Kuka, R. Koci, I. Georgiev // J. Geophys. Res. Solid Earth, 120, 8701–8719, 2015.

83. NASA Jet Propulsion Laboratory [Електронний ресурс] – Режим доступу до pecypcy: https://gipsy-oasis.jpl.nasa.gov/

84. Nikolaidis R. Observation of Geodetic and Seismic Deformation with the Global Positioning System / R. Nikolaidis // Dissertation for the degree Doctor of Philosophy in Earth Sciences. – San Diego, 2002. – 262 p.

85. Nørbech T. Transformation from ITRF to ETRF89 (EUREF89) in Norway [Електронний ресурс] / Т. Nørbech, H.-P.Plag // – Режим доступу до ресурсу: http://www.euref.eu/symposia/book2002/217-222.pdf

86. Panafidina N. On Computation of a Homogeneous EUREF Coordinate Time Series / N. Panafidina, Z. Malkin // In: Abstracts "Vistas for Geodesy in the New Millennium", IAG 2001 Scientific Assembly, Budapest, Hungary, 2-7 Sep 2001, P. 35-36.

87. Panafidina N. Computation of a homogeneous coordinate time series for European GPS stations by reprocessing of the weekly EPN solutions / N. Panafidina, Z. Malkin // In: EUREF Publication No 13, J. A. Torres, H. Homik (eds.), Verlag des Bundesamts flier Kartographie und Geodaesie, Frankfurt am Main, 2004, P. 423-427.

88. Panafidina N. IAA combined solution / N. Panafidina // In: EGU General Assembly Abstracts, EGU 2005, Vienna, Austria

89. Panafidina N. IAA combined EUREF weekly coordinate time series / N.Panafidina // Proceedings of the EUREF Symposium, Ponta Delgada, Azores, 2002,P. 396-397

90. Peng Fang. Analysis of Seasonal Signals in GPS Position Time Series / Fang Peng // Scripps Institution of Oceanography, University of California, San Diego, La Jolla, USA, 2002. 91. Rutledge D. Advances in Real-Time GPS Deformation Monitoring for Landslides, Volcanoes and Structures / D. Rutledge, J. Gnipp, J. Kramer // Proceedings of 10th International (FIG) Symposium on Deformation Measurements, Orange, CA, 2001 – P. 110-121.

92. Savchuk S. Densification ITRF08 into Ukraine area / S. Savchuk, S. Doskich //
Scientific journal "BALTIC SURVEYING" – 2017/1 (ISSN 2255 – 999X) – Vol.6 – P.
33-38

93. Savchuk S. Monitoring of crustal movements in Ukraine using the network of reference GNSS-stations / S. Savchuk, S. Doskich // Scientific journal "Geodynamics", Volume 2(23) – 2017 - P. 7-13

94. Seeber G. Satellite Geodesy, 2nd Edition / G. Seeber // Walter de Gruyter GmbH
& Co. Berlin New York – 612p.

95. Seitz M. Comparison of different combination strategies applied for the computation of terrestrial reference frames and geodetic parameter series / M. Seitz // Proceedings of the 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems, 2011 - P.1-9

96. Seitz M. The 2008 DGFI realization of the ITRS: DTRF2008 / M. Seitz, D. Angermann, M. Bloßfeld, H. Drewes ,M. Gerstl // J Geod, Volume 86, Issue 12, DOI: 10.1007/s00190-2012-0567-2, 2012a – P. 1097-1123.

97. Schön S. A Study on the Transfer of the ITRF Datum to a GPS Network in Antarctica. / S. Schön, H. Kutterer, M. Mayer, B. Heck // International Association of Geodesy Symposia Vol.123:29-34, Springer, New York Berlin Heidelberg, 2000 – P. 29-34

98. Sillard P. A review of algebraic constraints in terrestrial reference frame datum definition / P. Sillard, C. Boucher // Journal of Geodesy 75(2-3), 2001, P. 63-73.

99. Stangl G. Recent monitoring of crustal movements in the eastern Mediterranean: the usage of GPS measurements / G. Stangl, C. Bruyninx // Nato Science Series: IV: Earth and Environmental Sciences, vol 61, P. 169-181

100. Szafranek K. Configuration of the reference stations as the element of national reference frame reliability / K. Szafranek, J. Bogusz, M. Figurski // Geophysical Research Abstracts, Vol. 11, No 1(173), DOI. 10.13168/AGG.2013.0050, 2014, P. 5–15. 101. Szafranek K., Figurski M., Kamiński P., Kroszczyński K. (2009) ASG-EUPOS Monitoring with reference to EPN [Електронний ресурс] / K. Szafranek, M. Figurski, P. Kamiński, K. Kroszczyński // EUREF 2009 Symposium, Florence, Italy, 27-30 May 2009 – Режим доступу до ресурсу: https://www.degruyter.com/downloadpdf/j/arsa.2009.44.issue-3/v10018-009-0022-7/v10018-009-0022-7.pdf

102. Wöppelmann G. Terrestrial reference frame implementation in global GPS analysis at TIGA ULR consortium / G. Wöppelmann, M.-N. Bouin, Z. Altamimi // Physics and Chemistry of the Earth, 3-4, No. 33, DOI: 10.1016/j.pce.2006.11.001, 2008, P. 217–224.

103. Yaya P. Apport des combinaisons de techniques astrome'triques et ge'ode'siquesa` l'estimation des parame`tres d'orientation de la Terre,/ P. Yaya // Ph.D. thesis, Obs.de Paris, Paris, 2002.

104. Антонович К.М. Использование спутниковых радионавигационных систем в геодезии. В 2 т. Т. 1. Монография / К.М. Антонович // ГОУ ВПО «Сибирская государственная геодезическая академия». – М.: ФГУП «Картгеоцентр», 2005. – 334 с.

105. Белоусов В.В. Геотектоника / В.В. Белоусов // Издательство Московского университета, 1976 г. 334 с

106. Герасимов А.П. Уравнивание государственной геодезической сети / А.П. Герасимов. - М.: «Картгеоцентр» — «Геодезиздат», 1996г. - 218с.

107. Доскіч С.В. Порівняння координатних розв'язків з програмних пакетів GAMIT-GLOBK і GIPSY-OASIS / С.В. Доскіч, А.О. Марко // Матеріали VIII Міжнародної науково-практичної конференції «Нові технології в геодезії, землекористуванні, лісовпорядкуванні та природокористуванні». - 2016 - С. 121-124

108. Доскіч С. Дослідження геодинамічних впливів на зміну координат активних GNSS станцій України / С. Доскіч // Інформаційний бюлетень науковоосвітнього консорціуму ГеоГеліоАстрофізика – 2017 – С. 23-24

109. Доскіч С. Застосування програмного пакета GAMIT-GLOBK для створення регіональних комбінованих GNSS розв'язків / С. Доскіч // Сучасні досягнення геодезичної науки та виробництва. - 2016. - Вип. 1. - С. 59-62.

110. Доскіч. С. Математичні принципи створення комбінованих GNSS розв'язків.
Сучасні досягнення геодезичної науки та виробництва / С. Доскіч // - 2016. - Вип.
2. - С. 79-82.

111. Доскіч. С. Оцінка точності регіонального комбінованого GNSS розв'язку / С. Доскіч // Геодезія, картографія і аерофотознімання – 2016 - Вип. 83 – С.34-42

112. Доскіч. С. Оцінка точності комбінованого розв'язку регіональної мережі GNSS станцій / С. Доскіч // Програма та тези конференції Геофорум-2016 – 2016 -С. 28-29.

113. Доскіч. С. Про реалізацію земної референцної системи в національному масштабі / С. Доскіч // Міжнародна наукова конференція Астрономічна школа молодих вчених Україна, Житомир, 20-22 травня 2015 р. Програма і тези доповідей – 2015 – С.22-23

114. Дударев В. И. Классификация систем координат, применяемых в космической геодезии / В. И. Дударев // ГЕО-Сибирь-2010. VI Междунар. науч. конгр.: сб. материалов в 6 т. (Новосибирск, 19-29 апреля 2010 г.). - Новосибирск: СГГА, 2010. Т. 1, ч. 1. - С. 145-150.

115. Земная кора и история развития Черноморской впадины. М., Наука, 1975

116. Изотов А.А. Основы спутниковой геодезии / А.А. Изотов, В.И. Зубинский, Н.Л. Макаренко, А.М. Микиша// - М.: Недра, 1974. - 320 с.

117. Карти України [Електронний ресурс] – Режим доступу до ресурсу: http://geomap.land.kiev.ua/geology-8.html

118. Кафтан В.И. Системы координат и системы отсчета в геодезии, геоинформатике и навигации [Електронний ресурс] – Режим доступу до ресурсу: /http://www.geoprofi.ru/opinion/Article_3612_16.aspx

119. Литвин М.О. Розробка методик і програм спільної обробки GPS-, РНДБ- і лазерних спостережень на геодинамічному майданчику / М.О. Литвин // Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук. Головна астрономічна обсерваторія НАН України. Київ, 2008.

120. Марченко О. Референцні системи в геодезії [Текст]: навч. посіб. /О. М. Марченко, К. Р. Третяк, Н. П. Ярема // — Львів : Вид-во Львівської політехніки, 2013. — 216 с.

121. Марченко О. Оцінювання тензора швидкостей деформацій земної кори за даними GPS-спостережень у Східній Європі / О. Марченко, К. Третяк, О. Серант, Р. Висотенко // Геодинаміка. – 2011. – № 1(10). – С. 5–15.

122. Михайлов В. Основи геотектоніки: Навчальний посібник / В. Михайлов. – Київ: Видавничо-поліграфічний «Київський університет», 2002. – 168 с.

123. Навчальний сайт з географії, всесвітньої історії та історії України [Електронний ресурс] – Режим доступу до ресурсу: http://ukrmap.su/uk-g7/837.html 124. Навчальні матеріали [Електронний ресурс] – Режим доступу до ресурсу: http://pidruchniki.com/12991010/geografiya/relyef_geolopchna_budova_korisni_kopali ni

125. Основные черты тектоники Украины. К., Наукова думка, 1978

126. Панафидина Н. А. Комбинированное решение для координат станций європейской GPS-сети / Н. А. Панафидина, З. М. Малкин // Изв. ВУЗов. Геодезия и аэрофотосъемка, 2007, № 5 – С. 21-30.

127. Панафидина Н. А. Вычисление однородного ряда координат европейских GPS-станций из переработки недельных решений EPN / Н. А. Панафидина,
3. М. Малкин // Тр. ИПА РАН, 2004, вып. 11 – С. 14-28.

128. Савчук С.Г. Вища геодезія / С.Г. Савчук //: ЖДТУ – Житомир, 2005. – С.315.
129. Савчук С.Г. Встановлення вихідних координат референцних станцій мережі
ZAKPOS / С.Г. Савчук, О.Я. Гринишина-Полюга // Геодезія, картографія і аерофотознімання. Вип. 72, 2009. – С. 3-13

130. Савчук С. Дослідження оптимального часового інтервалу комбінування даних GNSS спостережень для геодинаміки / С. Савчук, С. Доскіч // Матеріали VI

Міжнародної наукової конференції «Геофізичні технології прогнозування та моніторингу геологічного середовища» - 2016 – С. 247-249

131. Савчук С.Г. Побудова сучасних геодезичних референцних систем координат / С.Г. Савчук // Геодезія, картографія і аерофотознімання. – Київ,2002.
– Вип. 62. – С.47 – 59.

132. Савчук С.Г. Моделювання параметрів референцної системи координат для території України / С.Г. Савчук // Геодезія, картографія і аерофотознімання. – Київ,2003. – Вип. 63. – С.73 – 79.

133. Савчук С.Г. Перша мережа активних референциих станцій в Україні ZAKPOS. Етапи встановлення та початок діяльності / С.Г. Савчук, І.І. Проданець, І.В. Калинич // Геопрофіль – Київ,2010 – Вип.І (10). – С. 16 – 23.

134. Сахарный Н.Ф. Курс теоретической механики. Учебное пособие. М.: Высшая школа. 1964. 844 с.

135. Серапинас Б.Б. Геодезические основы карт. [Електронний ресурс] – Режимдоступудоресурсу:

/http://www.geogr.msu.ru/cafedra/karta/docs/GOK/gok_lecture_3.pdf

136. Тектоническая карта Украинской ССР и Молдавской ССР. Масштаб 1:500000.

137. Сомов В.И. Современные движения земной коры западной половины Восточно-Європейской платформы Геодинамика и сейсмопрогностические исследования на Украине. –. К.: Наукова думка, 1992. С. 118-127

138. Сомов В.И. Геодинамика и структурная єволюция земной корі Карпато-Балкано-Динарского региона / В.И. Сомов, И.Ш. Рахимова // Геодинамика и сейсмопрогностические исследования на Украине – К.: Наукова думка, 1992. С. 128-144

139. Тектоника Украины. Под ред. Круглова С.С., Цыпко А.К., Недра, 1988.

140. Третяк К.Р. Дослідження періодичних змін висотного положення супутникових перманентних станцій світу / К.Р. Третяк, О.М. Смірнова, Т.М. Бределєва //Геодинаміка 1(12)/2012. - С. 11-29.

141. Хаин В. Геотектоника с основами геодинамики / В. Хаин, М. Ломизе / Изд. Московского университета, 1995 – 476 с.

додатки

ДОДАТОК А

Основні характеристики використаних у дослідженні референцних GNSS-станцій мережі України

	Назва	1	1
ПП	·	Мережа	Місце розташування
	станціі		
1	ALXN	EPS	м. Олександрія, Кіровоградська обл.
2	BAIA	RO	Baia Mare, Румунія
3	BALT	System Solutions	м. Балт, Одеська обл.
4	BCRV	TNT-TPI	м. Біла Церква, Київська обл.
5	BGS2	TNT-TPI	м. Богуслав, Київська обл.
6	BPDL	ASG-EUPOS	Biala Podlaska, Польща
7	BRGN	GEOTERRACE	м. Бережани, Тернопільська обл.
8	BRSL	TNT-TPI	м. Брусилів, Житомирська обл.
9	BRSP	TNT-TPI	м. Бориспіль, Київська обл.
10	CAHU	MoldPOS	Cahul, Молдова
11	CAUS	MoldPOS	Causeni, Молдова
12	CHER	GEOTERRACE	м. Червоноград, Львівська обл.
13	CHRV	TNT-TPI	м. Чернівці
14	СНТК	TNT-TPI	м. Чортків, Тернопільська обл.
15	CNIV	ГАО	м. Чернігів
16	CRNI	ZAKPOS	м. Чернівці
17	CTIG		м. Кишинів
18	DIZU	TNT-TPI	м. Дніпро
19	DNCK	TNT-TPI	м. Донецьк
20	DNPR	TNT-TPI	м. Дніпро
21	DNRS	СКНЗУ	м. Дунаївці, Хмельницька обл.
22	DORO	ROMPOS	Dorohoi, Румунія
23	DUNA	TNT-TPI	м. Дунаївці, Хмельницька обл.
24	EDIN	MoldPOS	Edinet, Молдова

25	EPS1	EPS	м. Харків
26	FRAN	TNT-TPI	м. Івано-Франківськ
27	GDRS	СКНЗУ	м. Городок, Харківська обл.
28	GIZV	TNT-TPI	с.Гізівщина, Хмельницька обл.
29	GLSV	ГАО	м. Київ
30	GRDN	TNT-TPI	м. Городенка, Івано-Франківська обл.
31	HMEL	ZAKPOS	м. Хмельницький
32	HOZD	ASG-EUPOS	Horyniec Zdroj, Польща
33	HRUB	ASG-EUPOS	Hrubieszow, Польща
34	HUST	ZAKPOS	м. Хуст, Закарпатська обл.
35	IGEO	MD	Chisinau, Молдова
36	IVNK	TNT-TPI	смт. Іванків, Київська обл.
37	JRSL	TPI NETpro	Jaroslaw, PL
38	JTMR	TNT-TPI	м. Житомир
39	KHAR	ГАО	м. Харків
40	KIRV	TNT-TPI	м. Кропивницький
41	KMST	TNT-TPI	м. Київ
42	КОСН	TNT-TPI	м. Кочубеїв, Хмельницька обл.
43	KOVL	System Solutions	м. Ковель, Волинська обл.
44	KPNS	EPS	м. Куп'янськ, Харківська обл.
45	KREM	TNT-TPI	м. Кременчук, Полтавська обл.
46	KRRG	TNT-TPI	м. Кривий Ріг, Дніпропетровська
10	inito		обл.
47	KRRS	СКНЗУ	м. Кропивницький
48	KTVL	ГАО	м. Кацивелі, Крим
49	KUCH	TNT-TPI	с. Куча, Хмельницька обл.
50	KYIV		м. Київ
51	KZLE	TNT-TPI	смт. Козелець, Чернігівська обл
52	KZLS	TNT-TPI	смт. Козельщина, Полтавська обл.

53	LUTS	System Solutions	м. Луцьк
54	LVNC	TNT-TPI	с. Лівинці, Чернігівська обл.
55	MAGD	System Solutions	смт. Магдалинівка,
55	MAOD	System Solutions	Дніпропетровська обл.
56	MALN	System Solutions	м. Малин, Житомирська обл.
57	MEZH	EPS	смт. Межова, Дніпропетровська обл.
58	MIKL	НДІГіК	м. Миколаїв
59	MIZG	ZAKPOS	м. Міжгір'я, Закарпатська обл.
60	MKVC	TNT-TPI	с. Мокіївці, Хмельницька обл.
61	MUKA	ZAKPOS	м. Мукачево, Закарпатська обл.
62	МҮКО	GEOTERRACE	м. Миколаїв, Львівська обл.
63	NADA	ZAKPOS	м. Надвірна, Івано-Франківська обл.
64	NARO	TPI NETpro	Narol, Польща
65	NEMO	ZAKPOS	м. Немирів, Вінницька обл.
66	NIKL	TNT-TPI	м. Миколаїв
67	NKPL	System Solutions	м. Нікополь, Дніпропетровська обл.
68	NMSH	TNT-TPI	смт. Немішаєве, Київська обл.
69	NVOL	System Solutions	м. Новоград- Волинський, Житомирська обл.
70	NVSL	TNT-TPI	смт. Нововасилівка, Запорізька обл.
71	ORIH	TNT-TPI	с. Оріхове, Дніпропетровська обл.
72	PART	TNT-TPI	м. Партизанське, Дніпропетровська обл.
73	PHM2	TNT-TPI	м. Переяслав-Хмельницький, Київська обл.
74	PLTV	TNT-TPI	м. Полтава
75	PMSK	TNT-TPI	м. Первомайський, Харківська обл.
76	POLV	SystemNET	м. Полтава
77	RAHI	ZAKPOS	м. Рахів, Закарпатська обл.
78	RDVL	GEOTERRACE	м. Радивилів, Рівненська обл.
79	RIVN	System Solutions	м. Рівне

80	RIVN	System Solutions	м. Рівне
81	RJNT	TNT-TPI	смт. Рожнятів, Івано-Франківська обл.
82	RMNK	TNT-TPI	с. Романківці, Чернівецька обл.
83	SAMB	GEOTERRACE	м. Самбір, Львівська обл.
84	SARN	ZAKPOS	м. Сарни, Рівненська обл.
85	SATU	ROMPOS	Satu Mare, Румунія
86	SHAZ	GEOTERRACE	смт. Шацьк, Волинська обл.
87	SHEV	System Solutions	м. Канів, Черкаська обл.
88	SHPT	TNT-TPI	м. Шепетівка, Хмельницька обл.
89	SHSH	TNT-TPI	смт. Шишаки, Полтавська обл.
90	SHUM	ZAKPOS	м. Шумськ , Терноп. обл.
91	SIMF	TNT-TPI	м. Сімферополь,
92	SKOL	GEOTERRACE	м. Сколе, Львівська обл.
93	SKON	ZAKPOS	м. Старокостянтинів, Хмельницька обл.
94	SKSV	SKPOS	Snina, Словаччина
95	SKVR	System Solutions	м. Сквира, Київська обл.
96	SMLA	ГАО	м. Сміла, Черкаська обл.
97	SMNV	TNT-TPI	смт. Семенівка, Полтавська обл.
98	SOLI	TPI NETpro	Solina,Польща
99	SORO	MoldPOS	Soroca, Молдова
100	STRY	ZAKPOS	м. Стрий, Львівська обл.
101	SULP	НУЛП	м. Львів
102	TELE	Telenest. Moldova	Telenesti, Молдова
103	TERN	ZAKPOS	м. Тернопіль
104	TETV	TNT-TPI	м. Тетіїв, Київська обл.
105	TREB	SKPOS	Trebisov, Словаччина
106	UMAN	System Solutions	м. Умань, Черкаська обл.
107	USDL	PL	Ustrzyki Dolne

108	UZHG	ZAKPOS	м. Ужгород
109	UZHL	ГАО	м. Ужгород
110	VAMO	ROMPOS	Vatra Moldovitei, Румунія
111	VASA	GNSSnet.hu	Vasarosnameny, Угорщина
112	VASL	TNT-TPI	смт. Васильківка, Дніпропетровська обл.
113	VISE	ROMPOS	Viseu de Sus, Румунія
114	VLVL	GEOTERRACE	м. Володимир-Волинськ, Волинська обл.
115	VNRS	СКНЗУ	м. Вінниця
116	VRHV	TNT-TPI	смт. Верховина, Івано-Франківська обл.
117	VSLE	TNT-TPI	смт. Веселе, Запорізька обл.
118	WLDW	TPI NETpro	Wlodawa, Польща
119	ZAKR	TNT-TPI	с. Закриничне, Хмельницька обл.
120	ZAST	TNT-TPI	м. Заставна, Чернівецька обл.
121	ZGUR	TNT-TPI	смт. Згурівка, Київська обл
122	ZHAS	EPS	м. Жашків, Черкаська обл.
123	ZHTR	EPS	м. Житомир
124	ZOLH	GEOTERRACE	м. Золочів, Львівська обл.
125	ZPRG	TNT-TPI	м. Запоріжжя

ДОДАТОК Б

Часові ряди координат та швидкості референцних GNSS-станцій мережі України в системі ITRF08

Станція	Х, м	Ү,м	Ζ,м	VX, мм/рік	VY, мм/рік	VZ, мм/рік	Епоха
ALUS_GPS	3750312.16097	2567013.29097	4460228.42877	-31.2	14.6	2.1	2013.768
ALXN_GPS	3534712.68902	2305362.13247	4766573.18883	-19.4	16.0	10.9	2013.828
BAIA_2PS	3945839.56498	1720428.46310	4691082.82631	-18.4	16.3	9.2	2016.999
BALT_GPS	3722654.81535	2115263.87682	4711762.73582	-21.1	16.8	15.7	2016.763
BBYS_3PS	3980358.64153	1382292.26174	4772772.06906	-19.1	16.3	8.2	2015.059

BBYS_4PS	3980358.62400	1382292.28580	4772772.08207	-19.2	16.3	8.2	2016.596
BCRV_GPS	3568279.16421	2069742.55790	4848556.55172	-19.3	15.6	10.6	2014.020
BGS2_GPS	3559518.24955	2127812.02202	4829905.40608	-19.9	14.0	9.3	2014.186
BLPL_GPS	3683022.71408	1618751.02905	4933027.45499	-21.0	12.8	6.7	2014.376
BRGN_GPS	3766420.24746	1752407.38070	4824043.11419	-18.3	16.1	11.1	2015.814
BRSL_GPS	3554693.43539	2012891.26748	4882117.46302	-14.2	21.0	12.6	2015.477
BRSP_GPS	3495823.52573	2096112.39471	4889506.17118	-19.9	13.8	8.0	2014.742
BUCU_2PS	4093760.66586	2007794.01966	4445130.10051	-17.1	17.7	9.5	2016.999
BYDG_2PS	3647216.68643	1184604.46951	5079625.27699	-17.6	14.9	9.2	2016.251
BYDG_GPS	3647216.70330	1184604.44615	5079625.25415	-17.6	14.9	9.2	2014.828
CAHU_GPS	3918408.75465	2100566.16876	4558018.33096	-20.3	14.4	8.5	2015.641
CAUS_GPS	3821307.77136	2153918.99713	4614773.92259	-19.1	14.4	8.0	2015.525
CHER_GPS	3715264.46899	1672086.42757	4891166.38144	-12.1	15.7	17.5	2015.843
CHRS_GPS	3396815.43438	2069096.81338	4969602.53541	-19.7	14.8	8.2	2013.830
CHRV_GPS	3824345.19143	1862166.91808	4737072.43839	-18.8	21.1	6.7	2014.046
CHTK_GPS	3773817.58763	1823744.09323	4791846.46440	-16.6	15.4	10.6	2016.198
CNIV_2PS	3397784.99044	2066990.71954	4969811.69249	-18.8	15.3	10.7	2016.999
CNIV_3PS	3397784.94568	2066990.69196	4969811.62902	-18.8	15.3	10.7	2016.999
CRNI_GPS	3824750.16677	1860009.01100	4737620.47575	-18.8	16.5	10.4	2015.604
CTIG_GPS	3817636.00594	2104405.49064	4640546.71121	-20.3	15.1	7.4	2013.781
DIZU_GPS	3463259.14435	2431916.37214	4756188.19915	-21.2	14.7	8.9	2016.323
DNCK_GPS	3378275.64315	2621541.61621	4716841.93071	-22.5	13.5	9.2	2014.139
DNPR_GPS	3470144.73954	2431148.60505	4751596.72077	-19.8	15.4	10.6	2016.331
DNRS_GPS	3756108.92586	1890162.23343	4780232.69458	-18.6	15.4	10.4	2013.814
DORO_GPS	3833732.03967	1902613.71876	4713415.19058	-19.0	17.1	6.4	2015.180
DUNA_GPS	3748012.73038	1898753.73007	4783151.02601	-16.7	14.8	9.9	2016.541
EDIN_GPS	3786833.61272	1954614.61687	4729981.73681	-19.2	15.8	8.5	2014.488
FRAN_GPS	3815148.26238	1755911.76914	4784539.62042	-17.8	16.0	10.5	2015.365
GDRS_GPS	3532701.75878	1994351.37425	4905461.57581	-19.0	13.7	7.0	2016.440
GIZV_GPS	3646049.58942	1906311.50256	4857755.21011	-20.0	13.8	9.9	2015.753
GLPL_GPS	3470545.96349	2543541.50549	4692509.53145	-15.2	22.5	14.5	2016.945
GLSV_2PS	3512888.72532	2068980.05743	4888903.30288	-19.1	15.2	8.2	2016.999
GRAZ_5PS	4194423.60988	1162702.90890	4647245.54042	-17.3	18.3	10.9	2016.999
GRDN_GPS	3811756.60287	1813797.99746	4765764.01660	-15.6	15.2	11.9	2015.680
HMEL_GPS	3706268.98933	1885665.77984	4820450.20963	-13.6	16.9	14.9	2014.022
HOZD_GPS	3756466.76483	1622631.40628	4876495.62206	-14.4	14.0	11.5	2014.940
HRUB_GPS	3693100.16510	1635499.63774	4920024.39212	-16.4	15.6	11.6	2014.917

HUST_GPS	3913941.84337	1685120.18789	4730124.20767	-19.3	15.8	8.0	2014.138
IGEO_GPS	3814975.04587	2101075.34931	4644144.08679	-18.9	15.7	9.6	2016.999
IVNK_GPS	3491657.97437	2008111.29237	4928979.45775	-20.7	14.4	8.9	2014.923
IZRS_GPS	3934476.43269	2166187.61261	4513531.92160	-17.7	15.5	10.9	2013.948
IZUM_GPS	3323171.35773	2529509.91548	4804637.28004	-20.7	14.3	8.0	2013.819
JARO_GPS	3789362.98139	1582622.62663	4864201.68506	-18.9	14.7	8.2	2016.759
JOZ2_2PS	3664880.36110	1409190.77755	5009618.58501	-17.7	15.1	8.7	2016.999
JRSL_GPS	3789363.00105	1582622.60935	4864201.67454	-18.9	14.7	8.2	2015.630
JTMR_GPS	3583695.16818	1961163.21268	4882052.41662	-17.8	15.7	11.5	2015.461
KACH_GPS	3657547.82877	1936265.35043	4837386.00943	-26.8	16.0	-5.7	2016.942
KHAR_GPS	3312984.09314	2428203.61043	4863307.92486	-16.8	15.2	7.4	2016.999
KIRV_GPS	3580644.69120	2257443.55551	4755337.26961	-20.1	15.2	7.9	2014.164
KMST_GPS	3505800.86559	2066726.77261	4894884.86517	-18.8	15.4	10.6	2014.051
KOCH_GPS	3768914.81341	1870572.27710	4777719.82902	-20.8	9.8	1.3	2016.416
KOVL_GPS	3638773.99907	1670941.86506	4948311.34669	-15.3	13.9	-2.8	2016.714
KPNS_GPS	3273573.25326	2522291.93042	4842089.03291	-17.3	18.0	14.8	2016.041
KPSK_GPS	3273526.89037	2522518.72775	4841996.99859	-17.3	18.0	14.8	2013.794
KREM_GPS	3490222.75995	2305260.21638	4799085.26119	-20.6	15.3	9.0	2014.769
KRRG_GPS	3574076.78300	2356633.80703	4712153.01053	-20.6	14.3	8.4	2016.342
KTVL_GPS	3785991.56002	2550749.23835	4439438.30327	-19.2	18.2	3.6	2016.999
KUCH_GPS	3743918.58965	1929615.49665	4773961.74153	-21.4	15.1	1.6	2015.780
KYIV_GPS	3499944.07836	2060755.08724	4901461.13085	-20.3	13.3	8.9	2013.796
KZLE_GPS	3449803.34332	2082376.25389	4927625.99715	-18.7	15.5	8.7	2014.231
KZLS_GPS	3465825.12809	2325579.99456	4806876.69779	-20.8	14.7	8.2	2015.618
LAMA_3PS	3524522.70732	1329693.80618	5129846.45613	-18.3	14.7	8.4	2016.999
LBRS_GPS	3444377.42119	2235744.34131	4864278.45622	-24.3	14.9	4.3	2013.522
LGRS_GPS	3270769.13504	2678885.54559	4759669.15765	-21.7	13.2	7.3	2013.685
LOZV_GPS	3386131.22420	2488414.28428	4782390.82407	-21.1	14.3	8.9	2013.784
LUCH_GPS	3316907.37077	2678833.48299	4728246.19015	-17.9	14.9	4.9	2014.004
LVNC_GPS	3792143.36934	1900661.19274	4747534.01951	-20.2	14.2	7.9	2015.526
MAGD_GPS	3443393.39685	2403366.59780	4784867.39413	-22.2	15.0	6.9	2016.153
MALN_GPS	3527321.90935	1974526.46791	4917238.74187	-22.0	16.6	5.2	2016.241
MATE_3PS	4641949.33457	1393045.65152	4133287.64927	-17.9	19.3	15.6	2016.999
MDVJ_2PS	2845455.82220	2160954.38898	5265993.30056	-21.7	12.3	6.5	2016.999
MIKL_2PS	3698553.74689	2308676.20025	4639769.60758	-19.6	15.6	9.4	2016.999
MIKL_GPS	3698553.74813	2308676.18865	4639769.59780	-19.6	15.6	9.4	2016.999
MIZG_GPS	3881355.22172	1687765.39927	4756159.68897	-26.1	10.5	-1.7	2013.304

MKVC_GPS	3653683.75690	1866953.79230	4867288.92630	-18.7	15.8	10.2	2014.511
MUKA_GPS	3909874.00812	1637331.29710	4750029.38606	-18.5	16.4	8.9	2015.604
MYKO_GPS	3790465.43668	1685988.20574	4828829.86940	-28.8	11.0	-9.1	2015.862
NADA_GPS	3840489.03940	1756374.04986	4764390.23626	-18.1	15.5	9.4	2015.764
NEMO_GPS	3675309.61473	2024523.20778	4787809.23330	-19.0	16.4	9.6	2015.364
NIKL_GPS	3697158.84404	2314683.00661	4637932.46376	-20.5	15.5	9.6	2014.034
NKPL_GPS	3557707.85218	2435365.69025	4684639.12898	-21.4	10.5	-0.7	2016.151
NKRS_GPS	3715573.04189	2315924.57726	4622603.22008	-8.7	-6.4	15.3	2013.792
NMSH_GPS	3512101.91617	2035407.15186	4903425.29862	-19.0	15.0	8.1	2015.062
NVOL_GPS	3595369.27550	1881357.38060	4904663.97166	-18.7	15.5	10.0	2014.768
NVSL_GPS	3548737.44284	2553533.84463	4628515.79957	-20.5	16.1	10.0	2015.024
NVVL_GPS	3596238.34301	1897201.22289	4897947.71996	-19.6	28.2	9.3	2016.159
ODRS_GPS	3788041.10403	2253377.99315	4594796.70276	-13.9	18.2	6.2	2013.580
ORIH_GPS	3498158.35653	2520902.81587	4684212.20060	-20.8	14.4	8.5	2014.661
PART_GPS	3669480.31728	2340844.92884	4646675.34279	-35.6	8.0	-10.9	2016.616
PHM2_GPS	3500793.95358	2140031.10289	4866968.12700	-18.3	13.3	12.6	2015.622
PHML_GPS	3498790.16088	2143181.42046	4867026.86664	-20.6	15.6	8.0	2013.486
PLTV_GPS	3413078.83079	2348808.89585	4833176.17099	-21.6	13.4	6.8	2014.651
PMSK_GPS	3355077.69754	2457684.98690	4819782.84049	-21.6	13.8	7.7	2015.817
POLV_2PS	3411557.08807	2348464.13087	4834396.96761	-20.8	13.0	7.6	2016.999
POLV_GPS	3411557.10920	2348464.14604	4834396.98945	-20.8	13.0	7.6	2016.999
POTS_3PS	3800689.44749	882077.57453	5028791.44114	-14.6	15.1	10.7	2016.999
RAHI_GPS	3896206.90390	1751119.37454	4721217.75618	-17.9	15.1	6.8	2014.093
RDVL_GPS	3705330.31447	1747981.51840	4872276.53721	-16.9	15.0	10.8	2016.112
RIGA_5PS	3183898.98086	1421478.66463	5322810.89548	-17.9	14.9	7.4	2016.999
RISA_GPS	3988762.59923	1452240.36899	4744788.15247	-0.2	0.1	-0.1	2016.581
RIVN_GPS	3635935.54369	1794403.41688	4907317.98021	-18.6	15.2	10.2	2015.718
RJHE_GPS	3644352.14473	1720098.53816	4927453.52249	-8.0	17.8	16.3	2013.657
RJNT_GPS	3830157.27341	1717771.56530	4786509.36379	-17.2	16.5	10.6	2015.728
RMNK_GPS	3764810.44496	1939075.50493	4753782.48010	-17.7	17.0	11.6	2015.206
SAMB_GPS	3813373.97049	1634465.31147	4828531.90817	-29.1	11.5	-9.9	2015.808
SARN_GPS	3569794.45565	1788894.73549	4957203.63921	-18.9	14.0	8.9	2015.849
SATU_GPS	3955660.90824	1668437.59565	4701385.94814	-19.4	15.8	8.1	2015.593
SHAZ_GPS	3631977.79811	1609614.64083	4973373.15206	-18.6	14.8	9.0	2015.334
SHEV_GPS	3523606.74449	2151842.86133	4845424.56335	-11.2	19.2	8.5	2016.238
SHPT_GPS	3645297.44371	1863387.51058	4874829.68927	-21.1	12.3	7.4	2016.075
SHSH_GPS	3415298.95657	2303089.35016	4853432.59563	-20.4	14.0	9.6	2015.683

SHUM_GPS	3679549.41795	1804037.83619	4871429.17126	-18.8	15.5	10.0	2015.471
SIMF_GPS	3740929.33787	2536824.41391	4485457.96279	-22.0	15.5	9.5	2014.433
SKOL_GPS	3841562.66459	1671363.04711	4793846.20672	-27.9	12.0	-6.9	2015.762
SKON_GPS	3673288.32266	1884882.15675	4845675.63759	-19.3	15.4	9.1	2013.987
SKYR_GPS	4520263.89687	2066159.72873	3984144.04741	7.7	14.9	1.0	2016.297
SMLA_GPS	3546267.51954	2204464.07830	4805379.27881	-19.5	14.8	9.6	2016.999
SMNV_GPS	3465551.40198	2267399.89105	4834624.16561	-20.8	15.0	7.5	2015.601
SOFI_2PS	4319371.88007	1868688.00332	4292064.04503	-17.4	18.7	8.6	2016.999
SOLI_GPS	3845867.48785	1590445.39709	4817705.36203	-15.3	15.2	13.7	2016.577
SORO_GPS	3752362.86119	2019662.92793	4730039.97670	-19.4	15.9	10.1	2013.770
STRY_GPS	3812850.81775	1687385.94173	4810814.63282	-16.7	16.3	11.3	2015.673
SUDA_GPS	3707822.88610	2606724.11801	4472514.51882	4.6	29.4	25.1	2013.160
SULP_2PS	3765296.77231	1677559.38756	4851297.51996	-18.1	15.3	9.5	2016.999
SULP_GPS	3765296.76984	1677559.38930	4851297.52008	-18.1	15.3	9.5	2016.999
SVRS_GPS	3792231.82001	2511994.15435	4456080.92776	-21.1	16.3	9.3	2013.588
TELE_GPS	3790177.55299	2062199.56125	4681443.35766	-41.8	-13.6	-13.6	2016.557
TERN_GPS	3740711.96768	1788698.59370	4830767.39604	-20.8	16.4	8.3	2014.127
TETV_GPS	3615562.42366	2060489.97205	4817601.82805	-18.7	16.0	10.1	2014.379
TOML_GPS	3744498.41011	1615564.11778	4887978.18076	-19.1	14.9	10.1	2014.874
TREB_GPS	3924512.51004	1563232.30609	4762817.90530	-17.9	17.1	10.2	2015.579
UMAN_GPS	3643068.11672	2120162.36478	4771109.49271	-19.8	12.4	12.1	2016.710
USDL_2PS	3837557.68343	1596303.42865	4822409.94837	-18.2	15.4	9.1	2016.270
USDL_GPS	3837557.70164	1596303.40601	4822409.92602	-18.2	15.4	9.1	2014.867
UZHG_GPS	3907902.51750	1601182.58489	4763870.27155	-23.9	27.1	-3.1	2015.769
UZHL_3PS	3907587.28391	1602428.83515	4763783.83705	-17.4	16.4	10.1	2014.397
UZHL_4PS	3907587.26344	1602428.87174	4763783.85702	-17.4	16.4	10.1	2015.857
UZHL_GPS	3907587.27701	1602428.83384	4763783.82443	-17.4	16.4	10.1	2014.510
VAMO_GPS	3883084.92887	1858392.37179	4691370.30133	-19.1	12.7	8.0	2016.720
VASA_GPS	3945788.01709	1619210.52392	4726634.66598	-19.2	16.3	7.4	2016.287
VASL_GPS	3444688.75714	2503180.35407	4732794.68098	-20.4	14.4	8.4	2014.860
VISE_GPS	3915083.91302	1778571.72725	4695502.50061	-18.8	15.4	8.6	2015.617
VLNS_GPS	3343600.38516	1580417.90983	5179337.39050	-19.7	14.0	8.6	2016.999
VLVL_GPS	3677701.08119	1664415.52211	4921855.39467	-22.3	13.4	4.2	2016.398
VNRS_GPS	3670860.36637	1987087.36958	4806792.91903	-21.5	10.5	7.7	2014.013
VRDP_GPS	3486253.01084	2380263.35595	4765413.85674	-20.0	13.9	9.9	2013.836
VRHV_GPS	3871108.94463	1787573.44028	4728428.51494	-20.1	16.2	9.1	2015.701
VSLE_GPS	3570898.59518	2494321.77277	4643670.27217	-22.6	14.0	6.3	2015.169

WLDW_GPS	3643602.74976	1588642.01453	4971631.61434	-19.5	14.5	8.9	2014.671
WLOD_GPS	3643602.71217	1588642.04468	4971631.63364	-19.5	14.5	8.9	2016.698
WTZR_2PS	4075580.35456	931854.00491	4801568.25276	-15.5	17.0	10.7	2016.999
ZAKR_GPS	3678036.46108	1862731.70486	4850637.15857	-19.0	15.0	9.2	2015.786
ZAST_GPS	3809325.35684	1843990.13482	4756143.97628	-17.0	16.3	11.6	2015.703
ZECK_4PS	3451174.44088	3060335.60820	4391955.76624	-21.9	14.5	9.8	2016.999
ZGUR_GPS	3457870.19727	2158501.82596	4889329.84047	-22.0	15.5	8.8	2014.601
ZHTR_GPS	3585643.79124	1960035.54617	4881081.38136	-16.4	16.5	12.9	2013.962
ZOLH_GPS	3741545.38062	1737030.49168	4848680.69392	-17.2	18.4	9.4	2015.930
ZPRG_GPS	3509633.42478	2459644.73234	4707985.32034	-21.1	14.3	8.4	2016.415

ДОДАТОК В

Часові ряди координат та швидкості референцних GNSS-станцій мережі України в системі IGukr08

Crowig	V v	Vv	7.4	VX,	VY,	VZ,	Блоко
Станція	А, М	I ,М	Z.,M	мм/рік	мм/рік	мм/рік	ЕПОХА
ALUS_GPS	3750312.15886	2567013.29715	4460228.41436	-30.6	12.7	6.7	2013.772
ALXN_GPS	3534712.67896	2305362.14361	4766573.17938	-18.5	14.2	15.8	2014.219
BAIA_2PS	3945839.56773	1720428.46076	4691082.82401	-17.1	14.6	14.4	2016.839
BALT_GPS	3722654.81510	2115263.87723	4711762.73462	-20.1	15.1	20.7	2016.763
BBYS_3PS	3980358.61273	1382292.28643	4772772.07848	-17.6	14.7	13.8	2016.528
BBYS_4PS	3980358.61787	1382292.29096	4772772.08398	-17.7	14.7	13.8	2016.904
BCRV_GPS	3568279.14123	2069742.57801	4848556.55346	-18.2	13.9	15.8	2015.105
BGS2_GPS	3559518.22025	2127812.04396	4829905.41184	-18.9	12.2	14.4	2015.584
BLPL_GPS	3683022.69265	1618751.04329	4933027.45140	-19.6	11.1	12.2	2015.276
BRGN_GPS	3766420.23674	1752407.39044	4824043.11668	-17.0	14.5	16.4	2016.352
BRSL_GPS	3554693.43359	2012891.27012	4882117.45511	-13.1	19.4	17.8	2015.482
BRSP_GPS	3495823.50557	2096112.40987	4889506.17182	-18.8	12.1	13.1	2015.684
BUCU_2PS	4093760.66778	2007794.01779	4445130.09882	-16.2	15.8	14.2	2016.881
BYDG_2PS	3647216.67679	1184604.47749	5079625.28013	-15.6	13.5	15.6	2016.765
BYDG_GPS	3647216.67640	1184604.46955	5079625.26431	-15.6	13.5	15.6	2016.315
CAHU_GPS	3918408.73582	2100566.18262	4558018.33645	-19.3	12.6	13.3	2016.547
CAUS_GPS	3821307.75522	2153919.01003	4614773.92584	-18.2	12.6	12.8	2016.337
CHER_GPS	3715264.46058	1672086.43836	4891166.38958	-10.7	14.1	22.9	2016.475
CHRS_GPS	3396815.41849	2069096.82742	4969602.52755	-18.6	13.2	13.5	2014.494
CHRV_GPS	3824345.15961	1862166.95419	4737072.44222	-17.6	19.4	11.9	2015.653

126

CHTK_GPS	3773817.58045	1823744.10009	4791846.46654	-15.4	13.8	15.9	2016.599
CNIV_2PS	3397784.99992	2066990.71230	4969811.68399	-17.7	13.6	16.1	2016.465
CNIV_3PS	3397784.95067	2066990.68815	4969811.62452	-17.7	13.6	16.1	2016.718
CRNI_GPS	3824750.14710	1860009.02848	4737620.48443	-17.6	14.8	15.6	2016.625
CTIG_GPS	3817635.98697	2104405.50725	4640546.70545	-19.3	13.3	12.3	2014.601
DIZU_GPS	3463259.13666	2431916.37784	4756188.20063	-20.4	12.9	13.7	2016.671
DNCK_GPS	3378275.60973	2621541.63834	4716841.93732	-21.8	11.7	13.9	2015.584
DNPR_GPS	3470144.73893	2431148.60627	4751596.71754	-19.0	13.6	15.4	2016.333
DNRS_GPS	3756108.90815	1890162.24980	4780232.69050	-17.4	13.7	15.6	2014.617
DORO_GPS	3833732.01645	1902613.74003	4713415.19484	-17.9	15.3	11.5	2016.363
DUNA_GPS	3748012.72927	1898753.73131	4783151.02415	-15.5	13.1	15.1	2016.577
EDIN_GPS	3786833.58418	1954614.64120	4729981.74333	-18.1	14.1	13.6	2015.910
FRAN_GPS	3815148.24321	1755911.78668	4784539.62805	-16.5	14.3	15.8	2016.397
GDRS_GPS	3532701.75686	1994351.37603	4905461.57371	-17.9	12.0	12.3	2016.510
GIZV_GPS	3646049.58676	1906311.50538	4857755.20442	-18.8	12.1	15.1	2015.813
GLPL_GPS	3470545.96343	2543541.50558	4692509.53118	-14.5	20.7	19.2	2016.945
GLSV_2PS	3512888.72801	2068980.05523	4888903.30061	-18.1	13.5	13.4	2016.842
GRAZ_5PS	4194423.61202	1162702.90664	4647245.53817	-15.6	16.6	16.6	2016.863
GRDN_GPS	3811756.59454	1813798.00600	4765764.01766	-14.3	13.6	17.2	2016.146
HMEL_GPS	3706268.97308	1885665.80036	4820450.21456	-12.5	15.2	20.2	2015.042
HOZD_GPS	3756466.74852	1622631.42237	4876495.62829	-13.0	12.3	17.0	2015.974
HRUB_GPS	3693100.14379	1635499.65821	4920024.40155	-15.0	14.0	17.1	2016.144
HUST_2PS	3913941.86718	1685120.18771	4730124.19150	-18.0	14.1	13.2	2013.015
HUST_GPS	3913941.81528	1685120.21173	4730124.21040	-18.0	14.1	13.2	2015.490
IGEO_GPS	3814975.04769	2101075.34790	4644144.08531	-17.9	13.9	14.4	2016.897
IVNK_GPS	3491657.95942	2008111.30398	4928979.45582	-19.6	12.7	14.1	2015.565
IZRS_GPS	3934476.42559	2166187.62174	4513531.91119	-16.8	13.6	15.6	2014.210
IZUM_GPS	3323171.34987	2529509.92461	4804637.26809	-20.0	12.5	12.8	2014.091
JARO_GPS	3789362.97878	1582622.62868	4864201.68548	-17.5	13.0	13.7	2016.888
JOZ2_2PS	3664880.36269	1409190.77618	5009618.58355	-16.0	13.6	14.6	2016.899
JRSL_GPS	3789362.98620	1582622.62115	4864201.67706	-17.5	13.0	13.7	2016.366
JTMR_GPS	3583695.14986	1961163.22915	4882052.42513	-16.6	14.0	16.7	2016.455
KHAR_GPS	3312984.09645	2428203.60761	4863307.92225	-15.9	13.4	12.3	2016.789
KIRV_GPS	3580644.65841	2257443.58162	4755337.27578	-19.2	13.4	12.8	2015.738
KMST_GPS	3505800.83333	2066726.79995	4894884.87554	-17.8	13.7	15.7	2015.686
KPNS_GPS	3273573.25002	2522291.93457	4842089.03115	-16.5	16.2	19.7	2016.191
KPSK_GPS	3273526.87958	2522518.74164	4841996.99280	-16.5	16.2	19.7	2014.297
	-	-					

	KREM_GPS	3490222.73240	2305260.23781	4799085.26815	-19.7	13.5	13.9	2016.068
	KRRG_GPS	3574076.77720	2356633.81152	4712153.01083	-19.8	12.5	13.3	2016.606
	KTVL_GPS	3785991.56538	2550749.23363	4439438.30092	-18.6	16.3	8.1	2016.710
	KUCH_GPS	3743918.58710	1929615.49946	4773961.73557	-20.3	13.4	6.7	2015.836
	KYIV_GPS	3499944.05308	2060755.10582	4901461.13012	-19.2	11.6	14.1	2014.930
	KZLE_GPS	3449803.31721	2082376.27671	4927626.00090	-17.6	13.8	13.9	2015.546
	KZLS_GPS	3465825.10973	2325580.00811	4806876.70223	-19.9	12.9	13.2	2016.477
	LAMA_3PS	3524522.70896	1329693.80484	5129846.45466	-16.5	13.2	14.5	2016.899
	LBRS_GPS	3444377.41739	2235744.34754	4864278.43871	-23.3	13.2	9.4	2013.539
ľ	LGRS_GPS	3270769.12388	2678885.55654	4759669.14709	-21.0	11.4	12.0	2014.113
	LOZV_GPS	3386131.21341	2488414.29516	4782390.81407	-20.3	12.5	13.7	2014.192
	LUCH_GPS	3316907.36681	2678833.49009	4728246.17721	-17.3	13.1	9.6	2014.123
ľ	LVNC_GPS	3792143.36749	1900661.19532	4747534.01195	-19.0	12.5	13.0	2015.532
	MAGD_GPS	3443393.39459	2403366.60024	4784867.39081	-21.4	13.2	11.8	2016.224
ľ	MALN_GPS	3527321.90843	1974526.46918	4917238.73783	-20.8	15.0	10.4	2016.242
	MATE_3PS	4641949.33710	1393045.64894	4133287.64624	-16.7	17.4	20.4	2016.849
ľ	MDVJ_2PS	2845455.82568	2160954.38716	5265993.29848	-20.5	10.7	12.3	2016.828
ľ	MIKL_2PS	3698553.74157	2308676.15950	4639769.62535	-18.9	13.7	14.1	2016.944
ľ	MIKL_GPS	3698553.75568	2308676.18299	4639769.59190	-18.9	13.7	14.1	2016.592
ľ	MIZG_2PS	3881355.21029	1687765.39637	4756159.65261	-24.8	8.9	3.6	2013.015
ľ	MIZG_GPS	3881355.21547	1687765.40593	4756159.66952	-24.8	8.9	3.6	2013.360
ľ	MKVC_GPS	3653683.73735	1866953.80978	4867288.92767	-17.5	14.1	15.4	2015.456
ľ	MUKA_GPS	3909873.99097	1637331.31256	4750029.39121	-17.1	14.8	14.2	2016.494
ľ	MYKO_GPS	3790465.41421	1685988.21475	4828829.86039	-27.4	9.4	-3.7	2016.624
	NADA_GPS	3840489.02823	1756374.05983	4764390.23808	-16.8	13.9	14.7	2016.333
ľ	NEMO_GPS	3675309.59651	2024523.22403	4787809.23835	-17.9	14.7	14.7	2016.279
	NIKL_GPS	3697158.80782	2314683.03539	4637932.47419	-19.7	13.7	14.4	2015.749
	NKPL_GPS	3557707.85009	2435365.69237	4684639.12519	-20.7	8.6	4.1	2016.220
ľ	NKRS_GPS	3715573.03920	2315924.58305	4622603.20483	-7.9	-8.2	20.1	2013.794
ľ	NMSH_GPS	3512101.89620	2035407.16836	4903425.30173	-17.9	13.3	13.4	2016.057
ľ	NVOL_GPS	3595369.27027	1881357.38626	4904663.96189	-17.5	13.8	15.3	2014.910
ľ	NVSL_GPS	3548737.41720	2553533.86578	4628515.80832	-19.8	14.3	14.6	2016.251
ľ	NVVL_GPS	3596238.34177	1897201.22457	4897947.71562	-18.4	26.5	14.6	2016.170
ľ	ODRS_GPS	3788041.09788	2253378.00335	4594796.68912	-13.0	16.4	11.0	2013.825
ľ	ORIH_GPS	3498158.32511	2520902.83881	4684212.20916	-20.1	12.6	13.2	2016.143
ľ	PHM2_GPS	3500793.95212	2140031.10525	4866968.11990	-17.2	11.6	17.8	2015.622
ļ	PHML_GPS	3498790.15269	2143181.42968	4867026.85166	-19.6	13.8	13.1	2013.719

	PLTV_GPS	3413078.81444	2348808.90798	4833176.16738	-20.7	11.6	11.7	2015.341
	PMSK_GPS	3355077.68113	2457684.99791	4819782.84401	-20.8	12.0	12.6	2016.558
	POLV_2PS	3411557.09381	2348464.12767	4834396.96402	-20.0	11.2	12.5	2016.712
	POLV_GPS	3411557.11351	2348464.12206	4834396.99477	-20.0	11.2	12.5	2016.436
	POTS_3PS	3800689.44867	882077.57322	5028791.43950	-12.4	13.6	17.2	2016.903
	RAHI_2PS	3896206.92047	1751119.36628	4721217.73227	-16.7	13.4	12.0	2013.015
	RAHI_GPS	3896206.88166	1751119.39436	4721217.75429	-16.7	13.4	12.0	2015.208
ľ	RDVL_GPS	3705330.30974	1747981.52290	4872276.53607	-15.6	13.4	16.2	2016.339
	RIGA_5PS	3183898.98292	1421478.66293	5322810.89378	-16.1	13.5	13.8	2016.872
	RIVN_GPS	3635935.52919	1794403.42905	4907317.98485	-17.3	13.6	15.6	2016.460
ľ	RJNT_GPS	3830157.26191	1717771.57654	4786509.36683	-15.9	14.8	15.9	2016.346
	RMNK_GPS	3764810.42572	1939075.52393	4753782.48823	-16.5	15.3	16.7	2016.246
ľ	SARN_GPS	3569794.44306	1788894.74511	4957203.64190	-17.6	12.4	14.3	2016.477
	SATU_GPS	3955660.88750	1668437.61272	4701385.95465	-18.1	14.1	13.4	2016.637
ľ	SHAZ_GPS	3631977.78372	1609614.65270	4973373.15286	-17.1	13.2	14.6	2016.031
ľ	SHEV_GPS	3523606.74368	2151842.86264	4845424.55944	-10.1	17.5	13.6	2016.238
ľ	SHPT_GPS	3645297.44229	1863387.51225	4874829.68449	-19.9	10.7	12.8	2016.088
	SHSH_GPS	3415298.94164	2303089.36105	4853432.59926	-19.5	12.2	14.6	2016.387
ľ	SHUM_GPS	3679549.41242	1804037.84153	4871429.16617	-17.5	13.8	15.4	2015.675
ľ	SIMF_GPS	3740929.30476	2536824.43879	4485457.97182	-21.3	13.6	14.0	2015.910
ľ	SKOL_GPS	3841562.64029	1671363.05793	4793846.19872	-26.5	10.3	-1.6	2016.614
ľ	SKON_GPS	3673288.29272	1884882.18175	4845675.64249	-18.1	13.7	14.3	2015.441
ľ	SMLA_GPS	3546267.52231	2204464.07632	4805379.27658	-18.5	13.1	14.6	2016.848
ľ	SMNV_GPS	3465551.38193	2267399.90598	4834624.17031	-19.9	13.3	12.5	2016.542
	SNEV_GPS	3523606.73344	2151842.86319	4845424.52949	-10.1	17.5	13.6	2013.015
	SOFI_2PS	4319371.88377	1868687.99958	4292064.04209	-16.6	16.8	13.2	2016.776
	SOLI_GPS	3845867.48720	1590445.39780	4817705.35974	-13.9	13.6	19.2	2016.579
	SORO_GPS	3752362.84921	2019662.94005	4730039.96737	-18.4	14.1	15.2	2014.233
	STRY_GPS	3812850.80412	1687385.95519	4810814.63849	-15.4	14.6	16.6	2016.444
ľ	SULP_2PS	3765296.77499	1677559.38538	4851297.51758	-16.8	13.7	14.9	2016.840
ľ	SULP_GPS	3765296.76211	1677559.35003	4851297.53651	-16.8	13.7	14.9	2016.672
ľ	SVRS_GPS	3792231.81593	2511994.16214	4456080.91370	-20.5	14.4	13.8	2013.680
ľ	TERN_2PS	3740711.97773	1788698.57924	4830767.35409	-19.5	14.7	13.6	2013.015
ľ	TERN_GPS	3740711.93624	1788698.61940	4830767.40007	-19.5	14.7	13.6	2015.551
ľ	TETV_GPS	3615562.40321	2060489.99086	4817601.82981	-17.6	14.3	15.2	2015.381
ľ	TOML_GPS	3744498.40337	1615564.12400	4887978.17228	-17.7	13.3	15.6	2015.083
ļ	TREB_GPS	3924512.49033	1563232.32499	4762817.91438	-16.5	15.4	15.6	2016.653

UMAN_GPS	3643068.11629	2120162.36534	4771109.49134	-18.8	10.6	17.1	2016.717
USDL_2PS	3837557.67364	1596303.43707	4822409.95198	-16.7	13.8	14.6	2016.792
USDL_GPS	3837557.67322	1596303.43060	4822409.93666	-16.7	13.8	14.6	2016.392
UZHG_GPS	3907902.51578	1601182.58693	4763870.26488	-22.5	25.5	2.3	2015.770
UZHL_3PS	3907587.25011	1602428.86719	4763783.85220	-16.0	14.7	15.5	2016.281
UZHL_4PS	3907587.24856	1602428.88586	4763783.86374	-16.0	14.7	15.5	2016.686
UZHL_GPS	3907587.22617	1602428.82006	4763783.86399	-16.0	14.7	15.5	2016.296
VAMO_GPS	3883084.92852	1858392.37227	4691370.29988	-17.9	11.0	13.2	2016.720
VASA_GPS	3945788.00860	1619210.53126	4726634.66752	-17.8	14.6	12.8	2016.707
VASL_GPS	3444688.73104	2503180.37362	4732794.68713	-19.6	12.6	13.1	2016.109
VISE_GPS	3915083.89467	1778571.74254	4695502.50638	-17.6	13.7	13.7	2016.561
VLNS_GPS	3343600.38730	1580417.90836	5179337.38880	-18.1	12.5	14.6	2016.881
VLVL_GPS	3677701.07841	1664415.52416	4921855.39221	-20.9	11.8	9.7	2016.489
VNRS_GPS	3670860.35690	1987087.37730	4806792.90749	-20.3	8.8	12.9	2014.314
VRDP_GPS	3486252.98321	2380263.37746	4765413.86061	-19.1	12.2	14.8	2015.143
VRHV_GPS	3871108.92552	1787573.45588	4728428.52138	-18.9	14.5	14.3	2016.625
VSLE_GPS	3570898.56812	2494321.79047	4643670.27649	-21.9	12.2	11.0	2016.345
WLDW_GPS	3643602.72460	1588642.03382	4971631.61874	-18.0	12.9	14.5	2015.880
WLOD_GPS	3643602.70889	1588642.04717	4971631.63419	-18.0	12.9	14.5	2016.854
WTZR_2PS	4075580.35643	931854.00276	4801568.25046	-13.5	15.5	16.8	2016.860
ZAKR_GPS	3678036.45871	1862731.70751	4850637.15282	-17.8	13.3	14.5	2015.835
ZAST_GPS	3809325.34465	1843990.14685	4756143.98078	-15.8	14.6	16.8	2016.376
ZECK_4PS	3451174.44193	3060335.60763	4391955.76562	-21.8	12.4	13.7	2016.952
ZGUR_GPS	3457870.18450	2158501.83684	4889329.83497	-21.0	13.8	14.0	2015.093
ZHAS_GPS	3609075.21405	2092317.07907	4808858.85368	3.6	-0.6	8.3	2013.015
ZHTR_GPS	3585643.78407	1960035.55479	4881081.36968	-15.3	14.8	18.1	2014.199
ZOLH_GPS	3741545.37040	1737030.50269	4848680.69632	-15.9	16.7	14.8	2016.482
ZPRG_GPS	3509633.41842	2459644.73701	4707985.32134	-20.3	12.5	13.1	2016.705
	1		1			1	1